Quantum Random Number Generation

  • Christian KollmitzerEmail author
  • Stefan Petscharnig
  • Martin Suda
  • Miralem Mehic
Part of the Quantum Science and Technology book series (QST)


The unpredictability of random numbers has found their applications in various fields such as lotteries, scientific simulations and fundamental physics tests. However, their most obvious application is in cryptographic protocols that inevitably include random number generators to generate seeds, initial random values, nonces (salts), blinding values and padding bytes. To be used for such tasks, number generators need to fulfil specific criteria to ensure the cryptographic protocol security performance. This primarily refers to the unpredictability of the generated numbers values even if the attacker knows the random number generator design. In contrast to deterministic random number generators that generate random values with entropy that is limited by the entropy of the initial seed, in this chapter we consider non-deterministic random number generators that rely on the quantum state of matter for generation of random numbers. Non-deterministic random number generators use various techniques such as radioactive decay, shot noise in semiconductors, photons and other.


  1. 1.
    Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., Pruneri, V., & Mitchell, M. W. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics express, 22(2), 1645–1654.Google Scholar
  2. 2.
    Alliance, C. S. (2016). Quantum Random Number Generators.Google Scholar
  3. 3.
    Bagini, V., & Bucci, M. (1999). A design of reliable true random number generator for cryptographic applications. In International Workshop on Cryptographic Hardware and Embedded Systems (pp. 204–218). Springer.Google Scholar
  4. 4.
    Bagini, V., & Bucci, M. (2007). A design of reliable true random number generator for cryptographic applications, pp. 204–218.Google Scholar
  5. 5.
    Bennet, A., Vértesi, T., Saunders, D. J., Brunner, N., & Pryde, G. J. (2014) Experimental semi-device-independent certification of entangled measurements. Physical Review Letters, 113(8), 80,405.
  6. 6.
    Burri, S., Stucki, D., Maruyama, Y., Bruschini, C., Charbon, E., & Regazzoni, F. (2014). SPADs for quantum random number generators and beyond. In Design Automation Conference (ASP-DAC), 2014 19th Asia and South Pacific (pp. 788–794). IEEE.Google Scholar
  7. 7.
    Bustard, P. J., Moffatt, D., Lausten, R., Wu, G., Walmsley, I. A., & Sussman, B. J. (2011). Quantum random bit generation using stimulated Raman scattering. Optics Express, 19(25), 25173–25180.CrossRefGoogle Scholar
  8. 8.
    Chor, B., Goldreich, O., Hasted, J., Freidmann, J., Rudich, S., & Smolensky, R. (1985). The bit extraction problem or t-resilient functions. In 26th Annual Symposium on Foundations of Computer Science (pp. 396–407). IEEE.Google Scholar
  9. 9.
    Collins, M. J., Clark, A., Yan, Z., Xiong, C., Steel, M. J., & Eggleton, B. J. (2014). Quantum random number generation using spontaneous raman scattering. In CLEO: QELS-Fundamental Science (pp. JTh2A–123). Optical Society of America.Google Scholar
  10. 10.
    Collins, M. J., Clark, A. S., Xiong, C., Mägi, E., Steel, M. J., & Eggleton, B. J. (2015). Random number generation from spontaneous Raman scattering. Applied Physics Letters, 107(14), 141,112.Google Scholar
  11. 11.
    Corporation, R. (1955). A million random digits with 100,000 normal deviates. Free Press.Google Scholar
  12. 12.
    Davies, R. B. (2002). Exclusive OR (XOR) and hardware random number generators. Retrieved May 31, 2013.Google Scholar
  13. 13.
    Dynes, J. F., Yuan, Z. L., Sharpe, A. W., & Shields, A. J. (2008). A high speed, postprocessing free, quantum random number generator. Applied Physics Letters, 93(3), 31,109. Scholar
  14. 14.
    England, D. G., Bustard, P. J., Moffatt, D. J., Nunn, J., Lausten, R., & Sussman, B. J. (2014). Efficient Raman generation in a waveguide: A route to ultrafast quantum random number generation. Applied Physics Letters, 104(5), 51,117.Google Scholar
  15. 15.
    Friedman, H. (1949). Geiger counter tubes. Technical report., Naval Research Lab Washington DC.Google Scholar
  16. 16.
    Fürst, H., Weier, H., Nauerth, S., Marangon, D. G., Kurtsiefer, C., & Weinfurter, H. (2010). High speed optical quantum random number generation. Optics Express, 18(12), 13029–13037.CrossRefGoogle Scholar
  17. 17.
    Gräfe, M., Heilmann, R., Perez-Leija, A., Keil, R., Dreisow, F., Heinrich, M., et al. (2014). On-chip generation of high-order single-photon W-states. Nature Photonics, 8(10), 791.CrossRefGoogle Scholar
  18. 18.
    Guang-Zhao, T., Mu-Sheng, J., Shi-Hai, S., Xiang-Chun, M., Chun-Yan, L., & Lin-Mei, L. (2013). Quantum random number generation based on quantum phase noise. Chinese Physics Letters, 30(11), 114,207.Google Scholar
  19. 19.
    Guo, H., Tang, W., Liu, Y., Wei, W. (2010) Truly random number generation based on measurement of phase noise of a laser. Physical Review E, 81(5), 51,137.Google Scholar
  20. 20.
    Haw, J. Y., Assad, S. M., Lance, A. M., Ng, N. H. Y., Sharma, V., Lam, P. K., & Symul, T. (2015). Maximization of extractable randomness in a quantum random-number generator. Physical Review Applied, 3(5), 54,004.
  21. 21.
    Henry, C. (1982). Theory of the linewidth of semiconductor lasers. IEEE Journal of Quantum Electronics, 18(2), 259–264.CrossRefGoogle Scholar
  22. 22.
    Herrero-Collantes, M., Garcia-Escartin, J. C. (2017). Quantum random number generators. Reviews of Modern Physics, 89(1).
  23. 23.
    Hirano, K., Yamazaki, T., Morikatsu, S., Okumura, H., Aida, H., Uchida, A., et al. (2010). Fast random bit generation with bandwidth-enhanced chaos in semiconductor lasers. Optics Express, 18(6), 5512–5524.CrossRefGoogle Scholar
  24. 24.
    Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., Zeilinger, A., & Wien, A. (2000). A fast and compact quantum random number generator. Review of Scientific Instruments, 71(4), 1675–1680.CrossRefGoogle Scholar
  25. 25.
    Jun, B., & Kocher, P. (1999). The Intel random number generator. Cryptography Research Inc. White paper, 27, 1–8.Google Scholar
  26. 26.
    Katsoprinakis, G. E., Polis, M., Tavernarakis, A., Dellis, A. T., Kominis, I. K. (2008). Quantum random number generator based on spin noise. Physical Review A, 77(5), 54,101.Google Scholar
  27. 27.
    Li, X., Cohen, A. B., Murphy, T. E., & Roy, R. (2011). Scalable parallel physical random number generator based on a superluminescent LED. Optics Letters, 36(6), 1020–1022.CrossRefGoogle Scholar
  28. 28.
    Liu, Y., Zhu, M., Guo, H. (2010). Truly random number generation via entropy amplification. arXiv:1006.3512.
  29. 29.
    Ma, H. Q., Xie, Y., & Wu, L. A. (2005). Random number generation based on the time of arrival of single photons. Applied Optics, 44(36), 7760–7763.CrossRefGoogle Scholar
  30. 30.
    Ma, X., Yuan, X., Cao, Z., B., Q., & Zhang, Z. (2016). Quantum random number generation. Nature.Google Scholar
  31. 31.
    Marandi, A., Leindecker, N. C., Pervak, V., Byer, R. L., & Vodopyanov, K. L. (2012). Coherence properties of a broadband femtosecond mid-IR optical parametric oscillator operating at degeneracy. Optics Express, 20(7), 7255–7262.CrossRefGoogle Scholar
  32. 32.
    Marandi, A., Leindecker, N. C., Vodopyanov, K. L., & Byer, R. L. (2012). All-optical quantum random bit generation from intrinsically binary phase of parametric oscillators. Optics Express, 20(17), 19322–19330.CrossRefGoogle Scholar
  33. 33.
    Martin, A., Sanguinetti, B., Lim, C. C. W., Houlmann, R., & Zbinden, H. (2015). Quantum random number generation for 1.25-GHz quantum key distribution systems. Journal of Lightwave Technology, 33(13), 2855–2859.Google Scholar
  34. 34.
    Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Physical Review, 32(1), 110.CrossRefGoogle Scholar
  35. 35.
    Oestreich, M., Römer, M., Haug, R. J., & Hägele, D. (2005). Spin noise spectroscopy in GaAs. Physical Review Letters, 95(21), 216,603.Google Scholar
  36. 36.
    Peres, Y. (2007). Iterating Von Neumann’s procedure for extracting random bits. The Annals of Statistics. Scholar
  37. 37.
    Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T. A., et al. (2010). Random numbers certified by Bell’s theorem. Nature, 464(7291), 1021.CrossRefGoogle Scholar
  38. 38.
    Qi, B., Chi, Y. M., Lo, H. K., & Qian, L. (2010). High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35(3), 312–314.CrossRefGoogle Scholar
  39. 39.
    Raymer, M. G., & Walmsley, I. A. (1990). The quantum coherence properties of stimulated Raman scattering. Progress in Optics, 28(C), 181–270. Scholar
  40. 40.
    Reidler, I., Aviad, Y., Rosenbluh, M., & Kanter, I. (2009). Ultrahigh-speed random number generation based on a chaotic semiconductor laser. Physical Review Letters, 103(2), 24,102.Google Scholar
  41. 41.
    Ruhkin, A. (2011). Statistical testing of randomness: Old and new procedures. In Randomness through computationGoogle Scholar
  42. 42.
    Rukhin, A., Soto, J., Nechvatal, J., Smid, M., & Barker, E. (2001). A statistical test suite for random and pseudorandom number generators for cryptographic applications. Technical report, Booz-Allen and Hamilton Inc Mclean Va.Google Scholar
  43. 43.
    Shaltiel, R. (2002). Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77(67–95), 10.zbMATHGoogle Scholar
  44. 44.
    Shaltiel, R. (2008). How to get more mileage from randomness extractors. Random Structures & Algorithms, 33(2), 157–186.MathSciNetCrossRefGoogle Scholar
  45. 45.
    Shen, Y., Tian, L., & Zou, H. (2010). Practical quantum random number generator based on measuring the shot noise of vacuum states. Physical Review A, 81(6), 063,814.
  46. 46.
    Sigwart, J. D., Sutton, M. D., & Bennett, K. D. (2018). How big is a genus? Towards a nomothetic systematics. Zoological Journal of the Linnean Society, 183(2), 237–252. Scholar
  47. 47.
    Stefanov, A., Gisin, N., Guinnard, O., Guinnard, L., & Zbinden, H. (2000). Optical quantum random number generator. Journal of Modern Optics, 47(4), 595–598. Scholar
  48. 48.
    Stich, D., Zhou, J., Korn, T., Schulz, R., Schuh, D., Wegscheider, W. et al. (2007). Effect of initial spin polarization on spin dephasing and the electron g factor in a high-mobility two-dimensional electron system. Physical Review Letters, 98(17), 176,401.Google Scholar
  49. 49.
  50. 50.
    Stipcevic, M. (2014). Open problems in mathematics and computational science. Scholar
  51. 51.
    Stipčević, M., & Rogina, B. M. (2007). Quantum random number generator based on photonic emission in semiconductors. Review of Scientific Instruments, 78(4), 45,104.Google Scholar
  52. 52.
    Stipčević, M., & Ursin, R. (2015) An on-demand optical quantum random number generator with in-future action and ultra-fast response. Scientific Reports, 5, 10,214.Google Scholar
  53. 53.
    Stucki, D., Burri, S., Charbon, E., Chunnilall, C., Meneghetti, A., & Regazzoni, F. (2013). Towards a high-speed quantum random number generator. In Emerging Technologies in Security and Defence; and Quantum Security II; and Unmanned Sensor Systems X (Vol. 8899, p. 88990R). International Society for Optics and Photonics.Google Scholar
  54. 54.
    Sunada, S., Harayama, T., Arai, K., Yoshimura, K., Tsuzuki, K., Uchida, A., et al. (2011). Random optical pulse generation with bistable semiconductor ring lasers. Optics Express, 19(8), 7439–7450.CrossRefGoogle Scholar
  55. 55.
    Sunar, B., Martin, W. J., & Stinson, D. R. (2007). A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers, 56(1).Google Scholar
  56. 56.
    Symul, T., Assad, S. M., & Lam, P. K. (2011). Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters, 98(23), 231,103. Scholar
  57. 57.
    Symul, T., Assad, S. M., & Lam, P. K. (2011). Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters, 98(231103), 1–3.Google Scholar
  58. 58.
    Taylor, G., & Cox, G. (2011). Behind Intel’s new random-number generator. IEEE Spectrum, 24.Google Scholar
  59. 59.
    Tisa, S., Villa, F., Giudice, A., Simmerle, G., & Zappa, F. (2015). High-speed quantum random number generation using CMOS photon counting detectors. IEEE Journal of Selected Topics in Quantum Electronics, 21(3), 23–29.CrossRefGoogle Scholar
  60. 60.
    Vartsky, D., Bar, D., Gilad, P., & Schon, A. (2011) High-speed, true random-number generator.Google Scholar
  61. 61.
    Von Neumann, J. (1951). Various techniques used in connection with random digits. National Bureauof Standards Applied Mathematics. DOI citeulike-article-id:10404544.Google Scholar
  62. 62.
    Wahl, M., Leifgen, M., Berlin, M., Röhlicke, T., Rahn, H. J., & Beson, O. (2011). An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters, 98(17).Google Scholar
  63. 63.
    Wang, A. B., Wang, Y. C., & Wang, J. F. (2009). Route to broadband chaos in a chaotic laser diode subject to optical injection. Optics Letters, 34(8), 1144–1146.CrossRefGoogle Scholar
  64. 64.
    Wayne, M. A., Jeffrey, E. R., Akselrod, G. M., & Kwiat, P. G. (2009). Photon arrival time quantum random number generation. Journal of Modern Optics, 56(4), 516–522.CrossRefGoogle Scholar
  65. 65.
    Wilber, S. A. (2013). Entropy analysis and system design for quantum random number generators in CMOS integrated circuits.Google Scholar
  66. 66.
    Williams, C. R. S., Salevan, J. C., Li, X., Roy, R., & Murphy, T. E. (2010). Fast physical random number generator using amplified spontaneous emission. Optics Express, 18(23), 23584–23597.CrossRefGoogle Scholar
  67. 67.
    Wu, L. A., Kimble, H. J., Hall, J. L., & Wu, H. (1986). Generation of squeezed states by parametric downconversion. Physical Review Letters, 57(20), 2520.Google Scholar
  68. 68.
    Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., & Lo, H. K. (2012). Ultrafast quantum random number generation based on quantum phase fluctuations. Optics Express, 20(11), 12366–12377.CrossRefGoogle Scholar
  69. 69.
    Yan, Q., Zhao, B., Liao, Q., & Zhou, N. (2014). Multi-bit quantum random number generation by measuringpositions of arrival photons. Review of Scientific Instruments, 85(10). Scholar
  70. 70.
    Yu, L. M., Yang, M. J., Wang, P. X., & Kawata, S. (2014). Note: A sampling method for quantum randombit generation. Review of Scientific Instruments, 046107(2010), 2008–2011 (2014). Scholar
  71. 71.
    Zheng, J., & Zheng, C. (2017). Stationary randomness of quantum cryptographic sequences on variant maps. In: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, ASONAM ’17 (pp. 1041–1048). ACM, New York, USA.
  72. 72.
    Zhou, H., Yuan, X., & Ma, X. (2015) Randomness generation based on spontaneous emissions of lasers. Physical Review A, 91(6), 62,316.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.AITKlagenfurtAustria
  2. 2.AITViennaAustria
  3. 3.Department of Telecommunications, Faculty of Electrical EngineeringUniversity of SarajevoSarajevoBosnia and Herzegovina
  4. 4.VSB - Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations