Advertisement

Multidimensional Zero-Correlation Linear Cryptanalysis of Reduced Round SPARX-128

  • Mohamed Tolba
  • Ahmed Abdelkhalek
  • Amr M. YoussefEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10719)

Abstract

SPARX is a family of ARX-based block ciphers proposed at ASIACRYPT 2016. This family was designed with the aim of providing provable security against single-characteristic linear and differential cryptanalysis. SPARX-128/128 and SPARX-128/256 are two members of this family which operate on data blocks of length 128 bits and keys of length 128 and 256 bits, respectively. In this work, we propose a zero-correlation distinguisher that covers 5 steps (20 rounds) for both variants of SPARX-128. Then, using specific linear masks at its output and utilizing some properties of the employed linear layer and S-box, we extend this distinguisher to 5.25 steps (21 rounds).

By exploiting some properties of the key schedule, we extend the 20-round distinguisher by 4 rounds to present a 24-round multidimensional zero-correlation attack against SPARX-128/256, i.e., 6 steps out of 10 steps. The 24-round attack is then extended to a 25-round (6.25 out of 10 steps) zero-correlation attack against SPARX-128/256 with the full codebook by using the developed 21-round distinguisher. In addition, we extend the 21-round distinguisher by one round to launch a 22-round multidimensional zero-correlation attack against SPARX-128/128, i.e., 5.5 steps out of 8 steps.

Keywords

Block ciphers Cryptanalysis Multidimensional zero-correlation SPARX 

Supplementary material

References

  1. 1.
    Abdelkhalek, A., Tolba, M., Youssef, A.M.: Impossible differential attack on reduced round SPARX-64/128. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT 2017. LNCS, vol. 10239, pp. 135–146. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57339-7_8 CrossRefGoogle Scholar
  2. 2.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404
  3. 3.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK: block ciphers for the internet of things. Cryptology ePrint Archive, Report 2015/585 (2015). http://eprint.iacr.org/2015/585
  4. 4.
    Bogdanov, A., Geng, H., Wang, M., Wen, L., Collard, B.: Zero-correlation linear cryptanalysis with FFT and improved attacks on ISO standards camellia and CLEFIA. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 306–323. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43414-7_16 CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 244–261. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_16 CrossRefGoogle Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45325-3_20 CrossRefGoogle Scholar
  7. 7.
    Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_18 CrossRefGoogle Scholar
  8. 8.
    Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Groschdl, J., Biryukov, A.: Design strategies for ARX with provable bounds: SPARX and LAX (Full Version). Cryptology ePrint Archive, Report 2016/984 (2016). http://eprint.iacr.org/2016/984
  9. 9.
    Matsui, M., Yamagishi, A.: A new method for known plaintext attack of FEAL cipher. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 81–91. Springer, Heidelberg (1993).  https://doi.org/10.1007/3-540-47555-9_7 CrossRefGoogle Scholar
  10. 10.
    Sun, L., Fu, K., Wang, M.: Improved zero-correlation cryptanalysis on SIMON. In: Lin, D., Wang, X.F., Yung, M. (eds.) Inscrypt 2015. LNCS, vol. 9589, pp. 125–143. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-38898-4_8 Google Scholar
  11. 11.
    Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46800-5_12 Google Scholar
  12. 12.
    Wang, Y., Wu, W.: Improved multidimensional zero-correlation linear cryptanalysis and applications to LBlock and TWINE. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 1–16. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08344-5_1 Google Scholar
  13. 13.
    Wen, L., Wang, M., Bogdanov, A., Chen, H.: Multidimensional zero-correlation attacks on lightweight block cipher HIGHT: improved cryptanalysis of an ISO standard. Inf. Proces. Lett. 114(6), 322–330 (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Xu, H., Jia, P., Huang, G., Lai, X.: Multidimensional zero-correlation linear cryptanalysis on 23-round LBlock-s. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 97–108. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29814-6_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Tolba
    • 1
  • Ahmed Abdelkhalek
    • 1
  • Amr M. Youssef
    • 1
    Email author
  1. 1.Concordia Institute for Information Systems EngineeringConcordia UniversityMontréalCanada

Personalised recommendations