Advertisement

Total Break of the SRP Encryption Scheme

  • Ray Perlner
  • Albrecht Petzoldt
  • Daniel Smith-Tone
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10719)

Abstract

Multivariate Public Key Cryptography (MPKC) is one of the main candidates for secure communication in a post-quantum era. Recently, Yasuda and Sakurai proposed in [7] a new multivariate encryption scheme called SRP, which combines the Square encryption scheme with the Rainbow signature scheme and the Plus modifier.

In this paper we propose a practical key recovery attack against the SRP scheme, which is based on the min-Q-rank property of the system. Our attack is very efficient and allows us to break the parameter sets recommended in [7] within minutes. Our attack shows that combining a weak scheme with a secure one does not automatically increase the security of the weak scheme.

Keywords

Multivariate cryptography SRP encryption scheme Cryptanalysis Min-Q-rank 

Notes

Acknowledgements

We thank the anonymous reviewers for their comments which helped to improve the paper. Furthermore, we want to thank Nadia Heninger and Cisco for their help with running our experiments.

Disclaimer. Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

References

  1. 1.
    Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post-Quantum Cryptography. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-88702-7 zbMATHGoogle Scholar
  2. 2.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_3 CrossRefGoogle Scholar
  3. 3.
    Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-Area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85053-3_4 CrossRefGoogle Scholar
  4. 4.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48910-X_15 Google Scholar
  5. 5.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_12 CrossRefGoogle Scholar
  6. 6.
    Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_14 CrossRefGoogle Scholar
  7. 7.
    Yasuda, T., Sakurai, K.: A multivariate encryption scheme with Rainbow. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29814-6_19 CrossRefGoogle Scholar
  8. 8.
    Clough, C., Baena, J., Ding, J., Yang, B.-Y., Chen, M.: Square, a new multivariate encryption scheme. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 252–264. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00862-7_17 CrossRefGoogle Scholar
  9. 9.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. ADIS, vol. 25. Springer, New York (2006).  https://doi.org/10.1007/978-0-387-36946-4 zbMATHGoogle Scholar
  10. 10.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. W. H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  11. 11.
    Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_2 Google Scholar
  12. 12.
    Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_3 CrossRefGoogle Scholar
  13. 13.
    Bettale, L., Faugére, J., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic. Des. Codes Crypt. 69, 1–52 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cabarcas, D., Smith-Tone, D., Verbel, J.A.: Key recovery attack for ZHFE. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 289–308. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59879-6_17 CrossRefGoogle Scholar
  15. 15.
    Vates, J., Smith-Tone, D.: Key recovery attack for all parameters of HFE-. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 272–288. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59879-6_16 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ray Perlner
    • 1
  • Albrecht Petzoldt
    • 1
  • Daniel Smith-Tone
    • 1
    • 2
  1. 1.National Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Department of MathematicsUniversity of LouisvilleLouisvilleUSA

Personalised recommendations