Advertisement

Leighton-Micali Hash-Based Signatures in the Quantum Random-Oracle Model

  • Edward EatonEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10719)

Abstract

Digital signatures constructed solely from hash functions offer competitive signature sizes and fast signing and verifying times. Moreover, the security of hash functions against a quantum adversary is believed to be well understood. This means that hash-based signatures are strong candidates for standard use in a post-quantum world. The Leighton-Micali signature scheme (LMS) is one such scheme being considered for standardization. However all systematic analyses of LMS have only considered a classical adversary. In this work we close this gap by showing a proof of the security of LMS in the quantum random-oracle model. Our results match the bounds imposed by Grover’s search algorithm within a constant factor, and remain tight in the multi-user setting.

Keywords

Post-quantum cryptography Digital signatures Random oracles Hash functions Multi-user setting 

Notes

Acknowledgments

Thanks to Gus Gutoski and Alfred Menezes for insightful discussion, as well as their helpful editorial skills. Additional thanks to Philip Lafrance.

References

  1. 1.
    Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Eaton, E., Gutoski, G., Krämer, J., Pawlega, F.: Revisiting TESLA in the quantum random oracle model. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 143–162. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59879-6_9 CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_21 CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_3 CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_21 CrossRefGoogle Scholar
  5. 5.
    Chatterjee, S., Menezes, A., Sarkar, P.: Another look at tightness. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 293–319. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28496-0_18 CrossRefGoogle Scholar
  6. 6.
    Dods, C., Smart, N.P., Stam, M.: Hash based digital signature schemes. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 96–115. Springer, Heidelberg (2005).  https://doi.org/10.1007/11586821_8 CrossRefGoogle Scholar
  7. 7.
    Eaton, E.: Leighton-micali hash-based signatures in the quantum random-oracle model. Cryptology ePrint Archive, Report 2017/607 (2017). http://eprint.iacr.org/2017/607
  8. 8.
    Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforgeable in the quantum random-oracle model. In: 10th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC), pp. 147–162 (2015)Google Scholar
  9. 9.
    Fluhrer, S.: Further analysis of a proposed hash-based signature standard. Cryptology ePrint Archive, Report 2017/553 (2017)Google Scholar
  10. 10.
    Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 387–416. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_15 CrossRefGoogle Scholar
  11. 11.
    Katz, J.: Analysis of a proposed hash-based signature standard. In: Chen, L., McGrew, D., Mitchell, C. (eds.) SSR 2016. LNCS, vol. 10074, pp. 261–273. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-49100-4_12 CrossRefGoogle Scholar
  12. 12.
    Lamport, L.: Constructing digital signatures from a one way function. Technical report, October 1979. https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
  13. 13.
    Leighton, F., Micali, S.: Large provably fast and secure digital signature schemes based on secure hash functions, 11 July 1995. https://www.google.com/patents/US5432852. US Patent 5,432,852
  14. 14.
    McGrew, D., Curcio, M., Fluhrer, S.: Hash-Based Signatures. Internet-Draft draft-mcgrew-hash-sigs-06, Internet Engineering Task Force, March 2017. In press. https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-06
  15. 15.
    Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990).  https://doi.org/10.1007/0-387-34805-0_21 CrossRefGoogle Scholar
  16. 16.
    Merkle, R.C.: Method of providing digital signatures, 5 January 1982. https://www.google.com/patents/US4309569. US Patent 4,309,569
  17. 17.
    Panos Kampanakis, S.F.: LMS vs XMSS: A comparison of the stateful hash-based signature proposed standards. Cryptology ePrint Archive, Report 2017/349 (2017)Google Scholar
  18. 18.
    Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_1 CrossRefGoogle Scholar
  19. 19.
    Unruh, D.: Revocable quantum timed-release encryption. J. ACM 62(6), 49:1–49:76 (2015). http://doi.acm.org/10.1145/2817206 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.ISARA CorporationWaterlooCanada
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations