Advertisement

An Upper Bound of the Minimal Dispersion via Delta Covers

  • Daniel RudolfEmail author
Chapter

Abstract

For a point set of n elements in the d-dimensional unit cube and a class of test sets we are interested in the largest volume of a test set which does not contain any point. For all natural numbers n, d and under the assumption of the existence of a δ-cover with cardinality |Γδ| we prove that there is a point set, such that the largest volume of such a test set without any point is bounded above by \(\frac {\log \vert \varGamma _\delta \vert }{n} + \delta \). For axis-parallel boxes on the unit cube this leads to a volume of at most \(\frac {4d}{n}\log (\frac {9n}{d})\) and on the torus to \(\frac {4d}{n}\log (2n)\).

Notes

Acknowledgements

The author thanks Aicke Hinrichs, David Krieg, Erich Novak and Mario Ullrich for fruitful discussions to this topic.

References

  1. 1.
    Aistleitner, C., Hinrichs, A., Rudolf, D.: On the size of the largest empty box amidst a point set. Discrete Appl. Math. 230, 146–150 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bachmayr, M., Dahmen, W., DeVore, R., Grasedyck, L.: Approximation of high-dimensional rank one tensors. Constr. Approx. 39(2), 385–395 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Beck, J., Chen, W.: Irregularities of Distribution. Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  4. 4.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability and the Vapnik-Chervonenkis dimension. J. Assoc. Comput. Mach. 36(4), 929–965 (1989)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  6. 6.
    Dick, J., Rudolf, D., Zhu, H.: Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo. Ann. Appl. Probab. 26, 3178–3205 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Dumitrescu, A., Jiang, M.: On the largest empty axis-parallel box amidst n points. Algorithmica 66(2), 225–248 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dumitrescu, A., Jiang, M.: Perfect vector sets, properly overlapping partitions, and largest empty box (2016, Preprint). Available at https://arxiv.org/abs/1608.06874
  9. 9.
    Edmonds, J., Gryz, J., Liang, D., Miller, R.: Mining for empty spaces in large data sets. Theor. Comput. Sci. 296(3), 435–452 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gnewuch, M.: Bracketing numbers for axis-parallel boxes and applications to geometric discrepancy. J. Complex. 24, 154–172 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Heinrich, S., Novak, E., Wasilkowski, G., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96, 279–302 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hlawka, E.: Abschätzung von trigonometrischen Summen mittels diophantischer Approximationen. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. S.-B. II 185, 43–50 (1976)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Naamad, A., Lee, D., Hsu, W.: On the maximum empty rectangle problem. Discrete Appl. Math. 8(3), 267–277 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Niederreiter, H.: A quasi-Monte Carlo method for the approximate computation of the extreme values of a function. Studies in Pure Mathematics, pp. 523–529. Birkhäuser, Basel (1983)CrossRefGoogle Scholar
  15. 15.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society for Industrial and Applied Mathematics, Philadelphia (1992)CrossRefGoogle Scholar
  16. 16.
    Novak, E.: Some results on the complexity of numerical integration. In: Cools, R., Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2014, pp. 161–183. Springer, Berlin (2016)Google Scholar
  17. 17.
    Novak, E., Rudolf, D.: Tractability of the approximation of high-dimensional rank one tensors. Constr. Approx. 43(1), 1–13 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Vol. 1: Linear information. EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008)Google Scholar
  19. 19.
    Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Vol. 2: Standard information for functionals. EMS Tracts in Mathematics, vol. 12. European Mathematical Society (EMS), Zürich (2010)Google Scholar
  20. 20.
    Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Vol. 3: Standard information for operators. EMS Tracts in Mathematics, vol. 18. European Mathematical Society (EMS), Zürich (2012)Google Scholar
  21. 21.
    Rote, G., Tichy, R.: Quasi-monte carlo methods and the dispersion of point sequences. Math. Comput. 23(8–9), 9–23 (1996)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Sosnovec, J.: A note on minimal dispersion of point sets in the unit cube (2017, Preprint). Available at https://arxiv.org/abs/1707.08794
  23. 23.
    Ullrich, M.: A lower bound for the dispersion on the torus. Math. Comput. Simul. 143, 186–190 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Mathematische StochastikUniversity of GoettingenGöttingenGermany

Personalised recommendations