Advertisement

A Spectral Method for the Biharmonic Equation

  • Kendall Atkinson
  • David Chien
  • Olaf Hansen
Chapter

Abstract

Let Ω be an open, simply connected, and bounded region in \(\mathbb {R}^{d}\), d ≥ 2, with a smooth boundary ∂Ω that is homeomorphic to \(\mathbb {S}^{d-1}\). Consider solving Δ2u + γu = f over Ω with zero Dirichlet boundary conditions. A Galerkin method based on a polynomial approximation space is proposed, yielding an approximation un. With sufficiently smooth problem parameters, the method is shown to be rapidly convergent. For \(u\in C^{\infty }\left ( \overline {\varOmega }\right ) \) and assuming ∂Ω is a C boundary, the convergence of \(\left \Vert u-u_{n}\right \Vert _{H^{2}\left ( \varOmega \right ) }\) to zero is faster than any power of 1∕n. Numerical examples illustrate experimentally an exponential rate of convergence.

References

  1. 1.
    Atkinson, K., Han, W.: Theoretical Numerical Analysis: A Functional Analysis Framework, 3rd edn. Springer, New York (2009)zbMATHGoogle Scholar
  2. 2.
    Atkinson, K., Hansen, O.: A spectral method for the eigenvalue problem for elliptic equations. Electron. Trans. Numer. Anal. 37, 386–412 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atkinson, K., Hansen, O.: Creating domain mappings. Electron. Trans. Numer. Anal. 39, 202–230 (2012)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Atkinson, K., Chien, D., Hansen, O.: A spectral method for elliptic equations: the Dirichlet problem. Adv. Comput. Math. 33, 169–189 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Atkinson, K., Hansen, O., Chien, D.: A spectral method for elliptic equations: the Neumann problem. Adv. Comput. Math. 34, 295–317 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atkinson, K., Chien, D., Hansen, O.: Evaluating polynomials over the unit disk and the unit ball. Numer. Algorithms 67, 691–711 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Atkinson, K., Chien, D., Hansen, O.: Spectral methods using multivariate polynomials on the unit ball (submitted)Google Scholar
  8. 8.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)CrossRefGoogle Scholar
  9. 9.
    Ciarlet, P.: The Finite Element Method For Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  10. 10.
    Destuynder, P., Salaun, M.: Mathematical Analysis of Thin Plate Models. Springer, Berlin (1996)CrossRefGoogle Scholar
  11. 11.
    Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  12. 12.
    Jaswon, M., Symm, G.: Integral Equation Methods in Potential Theory and Elastostatics. Academic, New York (1977)zbMATHGoogle Scholar
  13. 13.
    Jeon, Y.-M.: An indirect boundary integral equation for the biharmonic equation. SIAM J. Num. Anal. 31, 461–476 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeon, Y.-M.: New boundary element formulas for the biharmonic equation. Adv. Comput. Math. 9, 97–115 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, H., Xu, Y.: Spectral approximation on the unit ball. SIAM J. Num. Anal. 52, 2647–2675 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2: The Biharmonic Equation The Poisson Equation. Springer, Berlin (2000)zbMATHGoogle Scholar
  17. 17.
    Xu, Y.: Lecture notes on orthogonal polynomials of several variables. In: Advances in the Theory of Special Functions and Orthogonal Polynomials, pp. 135–188. Nova Science Publishers, New York (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The University of IowaIowa CityUSA
  2. 2.California State University San MarcosSan MarcosUSA

Personalised recommendations