A Note on the Multidimensional Moment Problem

  • Liqun Qi


In this note, we show that if a multidimensional sequence generates Hankel tensors and all the Hankel matrices, generated by this sequence, are positive semi-definite, then this sequence is a multidimensional moment sequence.



The author is thankful to Weiyang Ding for his comments. The author was supported by the Hong Kong Research Grant Council (Grant No. PolyU 501212, 501913, 15302114 and 15300715).


  1. 1.
    Berg, C.: The multidimensional moment problem and semigroups, moments in Mathematics. Proc. Symp. Appl. Math. 37, 110–124 (1987)CrossRefGoogle Scholar
  2. 2.
    Berg, C., Christensen, J.P.R., Jensen C.U.: A remark on the multidimensional moment problem. Math. Ann. 243, 163–169 (1979)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, Y., Qi, L., Wang, Q.: Computing extreme eigenvalues of large scale Hankel tensors. J. Sci. Comput. 68, 716–738 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chen, Y., Qi, L., Wang, Q.: Positive semi-definiteness and sum-of-squares property of fourth order four dimensional Hankel tensors. J. Comput. Appl. Math. 302, 356–368 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ding, W., Qi, L., Wei, Y.: Inheritance properties and sum-of-squares decomposition of Hankel tensors: theory and algorithms. Bit Numer. Math. 57, 169–190 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hamberger, H.: Über eine Erweiterung des Stieltjesschen Momentproblems, Parts I, II, III. Math. Ann. 81, 235–319 (1920), 82, 20–164, 168–187 (1921)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension. Am. J. Math. 57, 562–568 (1935)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Haviland, E.K.: On the momentum problem for distribution functions in more than one dimension II. Am. J. Math. 58, 164–168 (1936)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kuhlmann, S., Marshall, M.: Positivity, sums of squares and the multi-dimensional moment problem. Trans. Am. Math. Soc. 354, 4285–4301 (2002)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Qi, L.: Hankel tensors: associated Hankel matrices and Vandermonde decomposition. Commun. Math. Sci. 13, 113–125 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Qi L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Tensors. SIAM, Philadelphia (2017)CrossRefGoogle Scholar
  12. 12.
    Reznick, B.: Sums of even powers of real linear forms. Mem. Am. Math. Soc. 96(1992), Paper No. 463MathSciNetCrossRefGoogle Scholar
  13. 13.
    Song, Y., Qi, L.: Infinite and finite dimensional Hilbert tensors. Linear Algebra Appl. 451, 1–14 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vasilescu, F.-H.: Hamburger and Stieltjes moment problems in several variables. Trans. Am. Math. Soc. 354, 1265–1278 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang, Q., Li, G., Qi L., Xu, Y.: New classes of positive semi-definite Hankel tensors. Minimax Theory Appl. 2, 231–248 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied MathematicsThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong

Personalised recommendations