Regularized Quadrature Methods for Fredholm Integral Equations of the First Kind

  • Sergei V. Pereverzev
  • Evgeniya V. Semenova
  • Pavlo Tkachenko


Although quadrature methods for solving ill-posed integral equations of the first kind were introduced just after the publication of the classical papers on the regularization by A.N. Tikhonov and D.L. Phillips, there are still no known results on the convergence rate of such discretization. At the same time, some problems appearing in practice, such as Magnetic Particle Imaging (MPI), allow one only a discretization corresponding to a quadrature method. In the present paper we study the convergence rate of quadrature methods under general regularization scheme in the Reproducing Kernel Hilbert Space setting.



This work was done while the second author was visiting Johann Radon Institute within the EU-Horizon 2020 MSC-RISE project AMMODIT.

The authors affiliated with Johann Radon Institute gratefully acknowledge the support of the Austrian Science Fund (FWF): project I1669.


  1. 1.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)Google Scholar
  2. 2.
    Cohen, A., DeVore, R., Kerkyacharian, G., Picard, D.: Maximal spaces with given rate of convergence for thresholding algorithms. Appl. Comput. Harmon. Anal. 11, 167–191 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Dzyadyk, V.K., Shevchuk, I.A.: Theory of Uniform Approximation of Functions by Polynomials. Walter de Gruyter, Berlin (2008)Google Scholar
  4. 4.
    Erb, W., Kaethner, C., Ahlborg, M., Buzug, T.M.: Bivariate Lagrange interpolation at the node points of non-degenerate Lissajous curves. Numer. Math. 133, 685–705 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Graham, I.G., Atkinson, K.E.: On the Sloan iteration applied to integral equations of the first kind. IMA J. Numer. Anal. 13, 29–41 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Groetsch, C.W.: The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Research Notes in Mathematics. Pitman, London (1984)Google Scholar
  7. 7.
    Groetsch, C.W.: Convergence analysis of a regularized degenerate kernel methods for Fredholm integral equations of the first kind. Integr. Equ. Oper. Theory 13, 63–75 (1990)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Groetsch, C.W.: Stable Approximate Evaluation of Unbounded Operators. Lecture Notes in Mathematics. Springer, Berlin (2007)Google Scholar
  9. 9.
    Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin (2011)CrossRefGoogle Scholar
  10. 10.
    Krebs, J., Louis, A.K., Wendland, H.: Sobolev error estimates and a priori parameter selection for semi-discrete Tikhonov regularization. J. Inverse Ill-Posed Prob. 17, 845–869 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Kress, R.: Linear Integral Equations. Springer, Berlin (2014)CrossRefGoogle Scholar
  12. 12.
    Maas, P., Pereverzev, S.V., Ramlau R., Solodky, S.G.: An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection. Numer. Math. 87, 485–502 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Mathé, P., Hofmann, B.: How general are general source conditions? Inverse Prob. 24, 1–5 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mathé, P., Pereverzev, S.V.: Moduli of continuity for operator valued functions. Numer. Funct. Anal. Optim. 23, 623–631 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mathé, P., Pereverzev, S.V.: Discretization strategy for ill-posed problems in variable Hilbert scales. Inverse Prob. 19, 1263–1277 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse Prob. 19, 789–803 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mathé, P., Pereverzev, Sergei V.: Regularization of some linear ill-posed problems with discretized random noisy data. Math. Comput. 75, 1913–1929 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Nair, M.T., Pereverzev, S.: Regularized collocation method for Fredholm integral equations of the first kind. J. Complex. 23, 454–467 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Nashed, M., Wahba, G.: Regularization and approximation of linear operator equations in reproducing kernel spaces. Bull. Am. Math. Soc. 80, 1213–1218 (1974)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nashed, M., Wahba, G.: Generalized inverses in reproducing kernel spaces: an approach to regularization of linear operator equations. SIAM J. Math. Anal. 5, 974–987 (1974)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Nédélec, J.: Curved finite element methods for the solution of singular integral equations on surfaces in \(\mathbb {R}^3\). Comput. Methods Appl. Mech. Eng. 8, 61–80 (1976)Google Scholar
  22. 22.
    Panagiotopoulos, N., Duschka, R., Ahlborg, M., Bringout, G., Debbeler, C., Graeser, M., Kaethner, C., Lüdtke-Buzug, K., Medimagh, H., Stelzner, J., Buzug, T.M., Barkhausen, J., Vogt, F. M., Haegele, J.: Magnetic particle imaging – current developments and future directions. Int. J. Nanomedicine 10, 3097–3114 (2015)CrossRefGoogle Scholar
  23. 23.
    Pereverzev, S.V.: Optimization of Methods for Approximate Solution of Operator Equations. Nova Science Publishers, New York (1996)zbMATHGoogle Scholar
  24. 24.
    Pereverzev, S.V., Solodky, S.G., Volynets, E.A.: The balancing principle in solving semi-discrete inverse problems in Sobolev scales by Tikhonov method. Appl. Anal. 91, 435–446 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Plato, R., Vainikko, G.: On the regularization of projection methods for solving ill-posed problems. Numer. Math. 57, 63–79 (1990)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Reinhard, H.-J.: Analysis of Approximation Methods for Differential and Integral Equations. Springer, New York (1985)CrossRefGoogle Scholar
  27. 27.
    Sloan, I.H.: Error analysis for a class of degenerate kernel methods. Numer. Math. 25, 231–238 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Twomey, S.: On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 10, 97–101 (1963)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sergei V. Pereverzev
    • 1
  • Evgeniya V. Semenova
    • 2
  • Pavlo Tkachenko
    • 1
  1. 1.Johann Radon Institute for Computational and Applied MathematicsLinzAustria
  2. 2.Institute of Mathematics National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations