Advertisement

Matching Schur Complement Approximations for Certain Saddle-Point Systems

  • John W. Pearson
  • Andy WathenEmail author
Chapter

Abstract

The solution of many practical problems described by mathematical models requires approximation methods that give rise to linear(ized) systems of equations, solving which will determine the desired approximation. This short contribution describes a particularly effective solution approach for a certain class of so-called saddle-point linear systems which arises in different contexts.

Notes

Acknowledgements

Ian Sloan has been a great friend and mentor over many years. Through his mathematical insight, he has derived really useful approximations in different contexts throughout his long career. We wish to express our deep appreciation for his leadership in our field and to acknowledge his encouragement of all those who seek to contribute to it.

The authors are grateful to Shev MacNamara and an anonymous referee for their interesting and helpful comments which have left us with further avenues to consider. JWP was funded for this research by the Engineering and Physical Sciences Research Council (EPSRC) Fellowship EP/M018857/1.

References

  1. 1.
    Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66, 811–841 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33, 343–369 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Benner, P., Dolgov, S., Onwunta, A., Stoll, M.: Low-rank solvers for unsteady Stokes–Brinkman optimal control problem with random data. Comput. Methods Appl. Mech. Eng. 304, 26–54 (2016)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Benner, P., Onwunta, A., Stoll, M.: Block-diagonal preconditioning for optimal control problems constrained by PDEs with uncertain inputs. SIAM J. Matrix Anal. Appl. 37(2), 491–518 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Benzi, M., Haber, E., Taralli, L.: Multilevel algorithms for large-scale interior point methods. SIAM J. Sci. Comput. 31(6), 4152–4175 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Biros, G., Ghattas, O.: Parallel Lagrange–Newton–Krylov–Schur methods for PDE-constrained optimization. Part I: The Krylov–Schur solver. SIAM J. Sci. Comput. 27(2), 687–713 (2005)zbMATHGoogle Scholar
  8. 8.
    Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Boyanova, P., Do-Quang, M., Neytcheva, M: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)Google Scholar
  11. 11.
    Braess, D., Peisker, D.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning. IMA J. Numer. Anal. 6, 393–404 (1986)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dolgov, S., Pearson, J.W., Savostyanov, D.V., Stoll, M.: Fast tensor product solvers for optimization problems with fractional differential equations as constraints. Appl. Math. Comput. 273, 604–623 (2016)MathSciNetGoogle Scholar
  13. 13.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford University Press, New York (2014)CrossRefGoogle Scholar
  14. 14.
    Farrell, P.E., Pearson, J.W.: A preconditioner for the Ohta–Kawasaki equation. SIAM J. Matrix Anal. Appl. 38(1), 217–225 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London (1982)zbMATHGoogle Scholar
  16. 16.
    Greif, C., Moulding, E., Orban, D.: Bounds on eigenvalues of matrices arising from interior-point methods. SIAM J. Optim. 24(1), 49–83 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Haber, E., Ascher, U.M.: Preconditioned all-at-once methods for large, sparse parameter estimation problems. Inverse Prob. 17(6), 1847–1864 (2001)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Heidel, G., Wathen, A.J.: Preconditioning for boundary control problems in incompressible fluid dynamics. Numer. Linear Alg. Appl. (2017, submitted)Google Scholar
  19. 19.
    Ipsen, I.C.F.: A note on preconditioning nonsymmetric matrices. SIAM J. Sci. Comput. 23(3), 1050–1051 (2001)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Le Gia, Q.T., Sloan, I.H., Wathen, A.J.: Stability and preconditioning for a hybrid approximation on the sphere. Numer. Math. 118(4), 695–711 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pearson, J.W.: On the development of parameter-robust preconditioners and commutator arguments for solving Stokes control problems. Electron. Trans. Numer. Anal. 44, 53–72 (2015)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Pearson, J.W.: Preconditioned iterative methods for Navier–Stokes control problems. J. Comput. Phys. 292, 194–207 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Pearson, J.W., Stoll, M.: Fast iterative solution of reaction–diffusion control problems arising from chemical processes. SIAM J. Sci. Comput. 35(5), B987–B1009 (2013)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pearson, J.W., Wathen, A.J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Algebra Appl. 19(5), 816–829 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pearson, J.W., Wathen, A.J.: Fast iterative solvers for convection–diffusion control problems. Electron. Trans. Numer. Anal. 40, 294–310 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Pestana, J., Wathen, A.J.: Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57(1), 71–91 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Porcelli, M., Simoncini, V., Tani, M.: Preconditioning of active-set Newton methods for PDE-constrained optimal control problems. SIAM J. Sci. Comput. 37(5), S472–S502 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Praetorius, S., Voigt, M.: Development and analysis of a block-preconditioner for the phase-field crystal equation. SIAM J. Sci. Comput. 37(3), B425–B451 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rees, T., Dollar, H.S., Wathen, A.J.: Optimal solvers for PDE-constrained optimization. SIAM J. Sci. Comput. 32(1), 271–298 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Rusten, T., Winther, R.: A preconditioned iterative method for saddle point problems. SIAM J. Matrix Anal. Appl. 13(3), 887–904 (1992)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Silvester, D., Wathen, A.: Fast iterative solution of stabilised Stokes systems. Part II: using general block preconditioners. SIAM J. Numer. Anal. 31(5), 1352–1367 (1994)zbMATHGoogle Scholar
  34. 34.
    Smears, I.: Robust and efficient preconditioners for the discontinuous Galerkin time-stepping method. IMA J. Numer. Anal. 37(4), 1961–1985 (2017)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Stoll, M., Breiten, T.: A low-rank in time approach to PDE-constrained optimization. SIAM J. Sci. Comput. 37(1), B1–B29 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Stoll, M., Wathen, A.: All-at-once solution of time-dependent Stokes control. J. Comput. Phys. 232(1), 498–515 (2013)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Stoll, M., Pearson, J.W., Maini, P.K.: Fast solvers for optimal control problems from pattern formation. J. Comput. Phys. 304, 27–45 (2016)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wathen, A.J.: Preconditioning. Acta Numer. 24, 329–376 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of EdinburghEdinburghUK
  2. 2.Oxford UniversityOxfordUK

Personalised recommendations