Advertisement

Tractability of Multivariate Problems for Standard and Linear Information in the Worst Case Setting: Part II

  • Erich NovakEmail author
  • Henryk Woźniakowski
Chapter

Abstract

We study QPT (quasi-polynomial tractability) in the worst case setting for linear tensor product problems defined over Hilbert spaces. We assume that the domain space is a reproducing kernel Hilbert space so that function values are well defined. We prove QPT for algorithms that use only function values under the three assumptions:
  1. 1.

    the minimal errors for the univariate case decay polynomially fast to zero,

     
  2. 2.

    the largest singular value for the univariate case is simple and

     
  3. 3.

    the eigenfunction corresponding to the largest singular value is a multiple of the function value at some point.

     

The first two assumptions are necessary for QPT. The third assumption is necessary for QPT for some Hilbert spaces.

References

  1. 1.
    Gnewuch, M., Woźniakowski, H.: Quasi-polynomial tractability. J. Complex. 27, 312–330 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Hinrichs, A., Novak, E., Vybiral, J.: Linear information versus function evaluations for L 2-approximation. J. Approx. Theory 153, 97–107 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information. European Mathematical Society Publishing House, Zürich (2008)CrossRefGoogle Scholar
  4. 4.
    Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. European Mathematical Society Publishing House, Zürich (2010)CrossRefGoogle Scholar
  5. 5.
    Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume III: Standard Information for Operators. European Mathematical Society Publishing House, Zürich (2012)CrossRefGoogle Scholar
  6. 6.
    Novak, E., Woźniakowski, H.: Tractability of multivariate problems for standard and linear information in the worst case setting: Part I. J. Approx. Theory 207, 177–192 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR 4, 240–243 (1963), in RussianzbMATHGoogle Scholar
  8. 8.
    Traub, J.F., Wasilkowski, G.W., Woźniakowski, H.: Information-Based Complexity. Academic Press, London (1988)zbMATHGoogle Scholar
  9. 9.
    Wasilkowski, G.W., Woźniakowski, H.: Weighted tensor-product algorithms for linear multivariate problems. J. Complex. 15, 402–447 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jena University, Math InstituteJenaGermany
  2. 2.Institute of Applied Mathematics and MechanicsUniversity of WarsawWarsawPoland
  3. 3.Department of Computer ScienceColumbia UniversityNew YorkUSA

Personalised recommendations