Mean Convergence of Interpolation at Zeros of Airy Functions

  • Doron S. Lubinsky


The classical Erdős-Turán theorem established mean convergence of Lagrange interpolants at zeros of orthogonal polynomials. A non-polynomial extension of this was established by Ian Sloan in 1983. Mean convergence of interpolation by entire functions has been investigated by Grozev, Rahman, and Vértesi. In this spirit, we establish an Erdős-Turán theorem for interpolation by entire functions at zeros of the Airy function.



Research supported by NSF grant DMS1362208.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)Google Scholar
  2. 2.
    Akhlaghi, M.R.: On L p-convergence of nonpolynomial interpolation. J. Approx. Theory 55, 194–204 (1988)Google Scholar
  3. 3.
    Butzer, P.L., Higgins, J.R., Stens, R.L.: Classical and approximate sampling theorems: studies in the \(L^{p}\left ( \mathbb {R}\right ) \) and the uniform norm. J. Approx. Theory 137, 250–263 (2005)Google Scholar
  4. 4.
    Erdös, P., Turán, P.: On interpolation, I. Quadrature and mean convergence in the Lagrange interpolation. Ann. Math. 38, 142–155 (1937)Google Scholar
  5. 5.
    Ganzburg, M.: Polynomial interpolation and asymptotic representations for zeta functions. Diss. Math. (Rozprawy Mat.) 496, 117 pp. (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grozev, G.R., Rahman, Q.I.: Lagrange interpolation in the zeros of Bessel functions by entire functions of exponential type and mean convergence. Methods Appl. Anal. 3, 46–79 (1996)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Higgins, J.R.: Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford (1996)Google Scholar
  8. 8.
    Levin, E., Lubinsky, D.S.: On the Airy reproducing kernel, sampling series, and quadrature formula. Integr. Equ. Oper. Theory 63, 427–438 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Littman, F.: Interpolation and approximation by entire functions. In: Approximation Theory XI, pp. 243–255. Nashboro Press, Brentwood (2008)Google Scholar
  10. 10.
    Lubinsky, D.S.: A Taste of Erdős on Interpolation. In: Paul Erdős and His Mathematics, L. Bolyai Society Mathematical Studies II, pp. 423–454. Bolyai Society, Budapest (2000)Google Scholar
  11. 11.
    Mastroianni, G., Milovanovic, G.V.: Interpolation Processes Basic Theory and Applications. Springer Monographs in Mathematics, vol. XIV. Springer, Berlin (2009)Google Scholar
  12. 12.
    Nevai, P.: Lagrange interpolation at zeros of orthogonal polynomials. In: Lorentz, G.G., et al. (eds.) Approximation Theory II, pp. 163–201. Academic, New York (1976)Google Scholar
  13. 13.
    Nevai, P.: Geza Freud, orthogonal polynomials and Christoffel functions: a case study. J. Approx. Theory 48, 3–167 (1986)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rabinowitz, P., Sloan, I.H.: Product integration in the presence of a singularity. SIAM J. Numer. Anal. 21, 149–166 (1984)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rahman, Q.I., Vértesi, P.: On the L p convergence of Lagrange interpolating entire functions of exponential type. J. Approx. Theory 69, 302–317 (1992)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sloan, I.H.: On choosing the points in product integration. J. Math. Phys. 21, 1032–1039 (1979)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sloan, I.H.: Nonpolynomial interpolation. J. Approx. Theory 39, 97–117 (1983)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sloan, I.H., Smith, W.E.: Product integration with the Clenshaw-Curtis points: implementation and error estimates, Numer. Math. 34, 387–401 (1980)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Sloan, I.H., Smith, W.E.: Properties of interpolatory product integration rules. SIAM J. Numer. Anal. 19, 427–442 (1982)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Smith, W.E., Sloan, I.H.: Product-integration rules based on the zeros of Jacobi polynomials. SIAM J. Numer. Anal. 17, 1–13 (1980)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Smith, W.E., Sloan, I.H., Opie, A.: Product integration over infinite intervals I. rules based on the zeros of Hermite polynomials. Math. Comput. 40, 519–535 (1983)Google Scholar
  22. 22.
    Szabados, J., Vértesi, P.: Interpolation of Functions. World Scientific, Singapore (1990)CrossRefGoogle Scholar
  23. 23.
    Szabados, J., Vértesi, P.: A survey on mean convergence of interpolatory processes. J. Comput. Appl. Math. 43, 3–18 (1992)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vallée, O., Soares, M.: Airy Functions and Applications to Physics. World Scientific, Singapore (2004)CrossRefGoogle Scholar
  25. 25.
    Zayed, A.I., El-Sayed, M.A., Annaby, M.H.: On Lagrange interpolations and Kramer’s sampling theorem associated with self-adjoint boundary value problems. J. Math. Anal. Appl. 158, 269–284 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Georgia Institute of TechnologySchool of MathematicsAtlantaUSA

Personalised recommendations