Numerical Solutions of a Boundary Value Problem on the Sphere Using Radial Basis Functions

  • Quoc T. Le Gia


Boundary value problems on the unit sphere arise naturally in geophysics and oceanography when scientists model a physical quantity on large scales. Robust numerical methods play an important role in solving these problems. In this article, we construct numerical solutions to a boundary value problem defined on a spherical sub-domain (with a sufficiently smooth boundary) using radial basis functions (RBFs). The error analysis between the exact solution and the approximation is provided. Numerical experiments are presented to confirm theoretical estimates.



The author is grateful to many helpful discussions with Dr. Kerstin Hesse when writing the earlier version of the paper. He would also like to thank Professor Francis Narcowich for pointing out the recent results on Sobolev bounds for functions with scattered zeros on a Riemannian manifold. Many helpful comments from the referees to improve the presentation of the paper are also acknowledged.


  1. 1.
    Agricola, I., Friedrich, T.: Global Analysis: Differential forms in Analysis, Geometry and Physics. Graduate Studies in Mathematics, vol. 52. American Mathematical Society, Providence, RI (2002)Google Scholar
  2. 2.
    Chaos, Special Focus Issue: Large long-lived coherent structures out of chaos in planetary atmospheres and oceans. Chaos 4 (1994)Google Scholar
  3. 3.
    Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)Google Scholar
  4. 4.
    Crowdy, D.: Point vortex motion on the surface of a sphere with impenetrable boundaries. Phys. Fluids 18, 036602 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fasshauer, G.E.: Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv. Comput. Math. 11, 139–159 (1999)Google Scholar
  6. 6.
    Flyer, N., Wright, G.: Transport schemes on a sphere using radial basis functions. J. Comput. Phys. 226, 1059–1084 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Flyer, N., Wright, G.: A radial basis function method for the shallow water equations on a sphere. Proc. R. Soc. A 465, 1949–1976 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)Google Scholar
  9. 9.
    Franke, C., Schaback, R.: Solving partial differential equations by collocation using radial basis functions. Appl. Math. Comput. 93, 73–82 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (with Applications to Geomathematics). Clarendon, Oxford (1998)Google Scholar
  11. 11.
    Gemmrich, S., Nigam, N., Steinbach, O.: Boundary integral equations for the Laplace-Beltrami operator. In: Munthe-Kaas, H., Owren, B. (eds.) Mathematics and Computation, a Contemporary View. Proceedings of the Abel Symposium 2006, vol. 3, pp. 21–37. Springer, Heidelberg (2006)Google Scholar
  12. 12.
    Giesl, P., Wendland, H.: Meshless collocation: error estimates with application to dynamical systems. SIAM J. Numer. Anal. 45, 1723–1741 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gill, A.E.: Atmosphere-Ocean Dynamics. International Geophysics Series, vol. 30. Academic, New York (1982)Google Scholar
  14. 14.
    Hangelbroek, T., Narcowich, F.J., Ward, J.D.: Polyharmonic and related kernels on manifolds: interpolation and approximation. Found. Comput. Math. 12, 625–670 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics. American Mathematical Society, Providence, RI (2000)Google Scholar
  16. 16.
    Hon, Y.C., Mao, X.Z.: An efficient numerical scheme for Burgers’ equation. Appl. Math. Comput. 95, 37–50 (1998)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hubbert, S., Morton, T.M.: A Duchon framework for the sphere. J. Approx. Theory 129, 28–57 (2004)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kansa, E.J.: Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics I. Comput. Math. 19, 127–145 (1990)zbMATHGoogle Scholar
  20. 20.
    Kansa, E.J.: Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics II: solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. 19, 147–161 (1990)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kidambi, R., Newton, P.K.: Point vortex motion on a sphere with solid boundaries. Phys. Fluids 12(3), 581–588 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Le Gia, Q.T.: Galerkin approximation for elliptic PDEs on spheres. J. Approx. Theory 130, 123–147 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Le Gia, Q.T., Narcowich, F.J., Ward, J.D., Wendland, H.: Continuous and discrete least-squares approximation by radial basis functions on spheres. J. Approx. Theory 143, 124–133 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Lions, J.L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. I. Springer, New York (1972)zbMATHGoogle Scholar
  25. 25.
    Mitrea, M., Taylor, M.: Boundary layer methods for Lipschitz domains in Riemannian manifolds. J. Funct. Anal. 163, 181–251 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Morton, T.M., Neamtu, M.: Error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels. J. Approx. Theory 114, 242–268 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, New York (1966)CrossRefGoogle Scholar
  28. 28.
    Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33(6), 1393–1410 (2002)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Pucci, P., Serrin, J.: Review: the strong maximum principle revisited, J. Differ. Equ. 196, 1–66 (2004)CrossRefGoogle Scholar
  30. 30.
    Ratcliffe, J.G.: Foundations of Hyperbolic Manifolds. Springer, New York (1994)CrossRefGoogle Scholar
  31. 31.
    Saloff-Coste, L: Pseudo-Poincaré inequalities and applications to Sobolev inequalities. In: Laptev, A. (ed.) Around the Research of Vladimir Maz’ya I, pp. 349–372. Springer, New York (2010)CrossRefGoogle Scholar
  32. 32.
    Schoenberg, I.J.: Positive definite function on spheres, Duke Math. J. 9, 96–108 (1942)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Taylor, M.E.: Partial Differential Equations I, 2nd edn. Springer, New York (2011)CrossRefGoogle Scholar
  34. 34.
    Wendland, H: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  36. 36.
    Wendland, H: A high-order approximation method for semilinear parabolic equations on spheres. Math. Comput. 82, 227–245 (2013)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Wloka, J.: Partial Differential Equations, Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  38. 38.
    Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of New South WalesSydneyAustralia

Personalised recommendations