Advertisement

On Nyström and Product Integration Methods for Fredholm Integral Equations

  • Peter JunghannsEmail author
  • Giuseppe Mastroianni
  • Incoronata Notarangelo
Chapter

Abstract

The aim of this paper is to combine classical ideas for the theoretical investigation of the Nyström method for second kind Fredholm integral equations with recent results on polynomial approximation in weighted spaces of continuous functions on bounded and unbounded intervals, where also zeros of polynomials w.r.t. exponential weights are used.

Notes

Acknowledgements

The second author was partially supported by University of Basilicata (local funds).

The third author was partially supported by University of Basilicata (local funds) and by National Group of Computing Science GNCS-INdAM.

References

  1. 1.
    Anselone, P.M.: Collectively compact and totally bounded sets of linear operators. J. Math. Mech. 17, 613–621 (1967/1968)Google Scholar
  2. 2.
    Anselone, P.M.: Collectively compact approximations of integral operators with discontinuous kernels. J. Math. Anal. Appl. 22, 582–590 (1968)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anselone, P.M.: Collectively Compact Operator Approximation Theory and Applications to Integral Equations. Prentice-Hall, Englewood Cliffs, NJ (1971). With an appendix by Joel Davis, Prentice-Hall Series in Automatic ComputationGoogle Scholar
  4. 4.
    Anselone, P.M., Palmer, T.W.: Collectively compact sets of linear operators. Pac. J. Math. 25, 417–422 (1968)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Anselone, P.M., Palmer, T.W.: Spectral properties of collectively compact sets of linear operators. J. Math. Mech. 17, 853–860 (1967/1968)Google Scholar
  6. 6.
    Anselone, P.M., Palmer, T.W.: Spectral analysis of collectively compact, strongly convergent operator sequences. Pac. J. Math. 25, 423–431 (1968)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge Monographs on Applied and Computational Mathematics, vol. 4. Cambridge University Press, Cambridge (1997)Google Scholar
  8. 8.
    Badkov, V.M.: Convergence in the mean and almost everywhere of Fourier series in polynomials that are orthogonal on an interval. Mat. Sb. (N.S.) 95(137), 229–262, 327 (1974). English translation in Math. USSR Sbornik 24(2), 223–256 (1974)Google Scholar
  9. 9.
    Chandler, G.A., Graham, I.G.: Product integration-collocation methods for noncompact integral operator equations. Math. Comput. 50(181), 125–138 (1988)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chandler, G.A., Graham, I.G.: The convergence of Nyström methods for Wiener-Hopf equations. Numer. Math. 52(3), 345–364 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    De Bonis, M.C., Mastroianni, G.: Nyström method for systems of integral equations on the real semiaxis. IMA J. Numer. Anal. 29(3), 632–650 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dick, J., Kritzer, P., Kuo, F.Y., Sloan, I.H.: Lattice-Nyström method for Fredholm integral equations of the second kind with convolution type kernels. J. Complex. 23(4–6), 752–772 (2007)CrossRefGoogle Scholar
  13. 13.
    Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer Series in Computational Mathematics, vol. 9. Springer, New York (1987)CrossRefGoogle Scholar
  14. 14.
    Kasuga, T., Sakai, R.: Orthonormal polynomials with generalized Freud-type weights. J. Approx. Theory 121(1), 13–53 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82. Springer, Berlin (1989)CrossRefGoogle Scholar
  16. 16.
    Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)CrossRefGoogle Scholar
  17. 17.
    Kress, R.: Linear Integral Equations, Applied Mathematical Sciences, vol. 82, 3rd edn. Springer, New York (2014)CrossRefGoogle Scholar
  18. 18.
    Laurita, C., Mastroianni, G.: L p-convergence of Lagrange interpolation on the semiaxis. Acta Math. Hungar. 120(3), 249–273 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Levin, A.L., Lubinsky, D.S.: Christoffel functions, orthogonal polynomials, and Nevai’s conjecture for Freud weights. Constr. Approx. 8(4), 463–535 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mastroianni, G., Milovanović, G.V.: Some numerical methods for second-kind Fredholm integral equations on the real semiaxis. IMA J. Numer. Anal. 29(4), 1046–1066 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mastroianni, G., Monegato, G.: Nyström interpolants based on the zeros of Legendre polynomials for a noncompact integral operator equation. IMA J. Numer. Anal. 14(1), 81–95 (1994)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mastroianni, G., Notarangelo, I.: A Lagrange-type projector on the real line. Math. Comput. 79(269), 327–352 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Mastroianni, G., Notarangelo, I.: Some Fourier-type operators for functions on unbounded intervals. Acta Math. Hungar. 127(4), 347–375 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Mastroianni, G., Notarangelo, I.: A Nyström method for Fredholm integral equations on the real line. J. Integr. Equ. Appl. 23(2), 253–288 (2011)CrossRefGoogle Scholar
  25. 25.
    Mastroianni, G., Occorsio, D.: Some quadrature formulae with nonstandard weights. J. Comput. Appl. Math. 235(3), 602–614 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Mastroianni, G., Russo, M.G.: Lagrange interpolation in weighted Besov spaces. Constr. Approx. 15(2), 257–289 (1999)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mastroianni, G., Szabados, J.: Polynomial approximation on the real semiaxis with generalized Laguerre weights. Stud. Univ. Babeş-Bolyai Math. 52(4), 105–128 (2007)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mastroianni, G., Totik, V.: Uniform spacing of zeros of orthogonal polynomials. Constr. Approx. 32(2), 181–192 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Mastroianni, G., Notarangelo, I., Szabados, J.: Polynomial inequalities with an exponential weight on (0, +). Mediterr. J. Math. 10(2), 807–821 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mastroianni, G., Milovanović, G.V., Notarangelo, I.: Gaussian quadrature rules with an exponential weight on the real semiaxis. IMA J. Numer. Anal. 34(4), 1654–1685 (2014)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nevai, P.G.: Orthogonal polynomials. Mem. Am. Math. Soc. 18(213), v+185 (1979)Google Scholar
  32. 32.
    Nevai, P.: Mean convergence of Lagrange interpolation. III. Trans. Am. Math. Soc. 282(2), 669–698 (1984)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Nevai, P.: Hilbert transforms and Lagrange interpolation. Addendum to: “mean convergence of Lagrange interpolation. III” [Trans. Am. Math. Soc. 282(2), 669–698 (1984); MR0732113 (85c:41009)]. J. Approx. Theory 60(3), 360–363 (1990)Google Scholar
  34. 34.
    Sloan, I.H.: Analysis of general quadrature methods for integral equations of the second kind. Numer. Math. 38(2), 263–278 (1981/1982)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sloan, I.H.: Quadrature methods for integral equations of the second kind over infinite intervals. Math. Comput. 36(154), 511–523 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Peter Junghanns
    • 1
    Email author
  • Giuseppe Mastroianni
    • 2
  • Incoronata Notarangelo
    • 2
  1. 1.Fakultät für MathematikTechnische Universität ChemnitzChemnitzGermany
  2. 2.Department of Mathematics, Computer Sciences and EconomicsUniversity of BasilicataPotenzaItaly

Personalised recommendations