Upwind Hybrid Spectral Difference Methods for Steady-State Navier–Stokes Equations

  • Youngmok JeonEmail author
  • Dongwoo Sheen


We propose an upwind hybrid spectral difference method for the steady-state Navier–Stokes equations. The (upwind) hybrid spectral difference method is based on a hybridization as follows: (1) an (upwind) spectral finite difference approximation of the Navier–Stokes equations within cells (the cell finite difference) and (2) an interface finite difference on edges of cells. The interface finite difference approximates continuity of normal stress on cell interfaces. The main advantages of this new approach are three folds: (1) they can be applied to non-uniform grids, retaining the order of convergence, (2) they are stable without using a staggered grid and (3) the schemes have an embedded static condensation property, hence, there is a big reduction in degrees of freedom in resulting discrete systems. The inf-sup condition is proved. Various numerical examples including the driven cavity problem with the Reynolds numbers, 5000–20,000, are presented.



Youngmok Jeon was supported by National Research Foundation of Korea (NRF-2015R1D1A1A09057935). Dongwoo Sheen was supported in part by National Research Foundation of Korea (NRF-2017R1A2B3012506 and NRF-2015M3C4A7065662).


  1. 1.
    Amrouche, C., Rodríguez-Bellido, M.: Stationary Stokes, Oseen and Navier–Stokes equations with singular data. Arch. Ration. Mech. Anal. 199(2), 597–651 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balan, A., May, G., Schöberl, J.: A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements. J. Comput. Phys. 231(5), 2359–2375 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bernardi, C., Maday, Y.: A collocation method over staggered grids for the Stokes problem. Int. J. Numer. Methods Fluids 8(5), 537–557 (1988)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis, vol. 5, pp. 209–485. Elsevier, Amsterdam (1997)Google Scholar
  5. 5.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44. Springer, Berlin (2013)CrossRefGoogle Scholar
  6. 6.
    Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), 835–867 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Erturk, E., Corke, T.C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48(7), 747–774 (2005)CrossRefGoogle Scholar
  9. 9.
    Ferziger, J.H., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)CrossRefGoogle Scholar
  10. 10.
    Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)CrossRefGoogle Scholar
  12. 12.
    Girault, V., Raviart P.-A.: Finite Element Methods for Navier-Stokes Equations, Springer. Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986)CrossRefGoogle Scholar
  13. 13.
    Hanley, P.: A strategy for the efficient simulation of viscous compressible flows using a multi-domain pseudospectral method. J. Comput. Phys. 108(1), 153–158 (1993)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeon, Y.: Hybrid difference methods for PDEs. J. Sci. Comput. 64(2), 508–521 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Jeon, Y., Park, E.-J.: New locally conservative finite element methods on a rectangular mesh. Numer. Math. 123(1), 97–119 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Jeon, Y., Tran, M.L.: The upwind hybrid difference methods for a convection diffusion equation. Appl. Numer. Math. (2018). MathSciNetCrossRefGoogle Scholar
  17. 17.
    Jeon Y., Park E.-J., Shin, D.-W.: Hybrid spectral difference methods for the Poisson equation. Comput. Methods Appl. Math. 17, 253–267 (2017)Google Scholar
  18. 18.
    Kim, H.: Existence and regularity of very weak solutions of the stationary Navier–Stokes equations. Arch. Ration. Mech. Anal. 193(1), 117–152 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kopriva, D.A.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method. J. Comput. Phys. 128 (2), 475–488 (1996)CrossRefGoogle Scholar
  20. 20.
    Kopriva, D.A.: A staggered-grid multidomain spectral method for the compressible Navier–Stokes equations. J. Comput. Phys. 143(1), 125–158 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flow. DTIC Document (1995)Google Scholar
  22. 22.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)Google Scholar
  23. 23.
    Lim, R., Sheen, D.: Nonconforming finite element method applied to the driven cavity problem. Commun. Comput. Phys. 21(4), 1021–1038 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Liu, Y., Vinokur, M., Wang, Z.J.: Spectral difference method for unstructured grids I: basic formulation. J. Comput. Phys. 216(2), 780–801 (2006)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)CrossRefGoogle Scholar
  26. 26.
    Van den Abeele, K., Lacor, C., Wang, Z.J.: On the stability and accuracy of the spectral difference method. J. Sci. Comput. 37(2), 162–188 (2008)Google Scholar
  27. 27.
    Versteeg, H.K., Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Pearson Education, Harlow (2007)Google Scholar
  28. 28.
    Wang, Z.J., Liu, Y., May, G., Jameson, A.: Spectral difference method for unstructured grids II: extension to the Euler equations. J. Sci. Comput. 32(1), 45–71 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zang, T.A., Hussaini, M.Y.: Mixed spectral/finite difference approximations for slightly viscous flows. In: Seventh International Conference on Numerical Methods in Fluid Dynamics, pp. 461–466. Springer, Berlin (1981)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ajou UniversitySuwonKorea
  2. 2.Seoul National UniversitySeoulKorea

Personalised recommendations