A Discrete Collocation Method for a Hypersingular Integral Equation on Curves with Corners

  • Thomas Hartmann
  • Ernst P. Stephan


This paper is devoted to the approximate solution of a hypersingular integral equation on a closed polygonal boundary in \({\mathbb {R}}^2\). We propose a fully discrete method with a trial space of trigonometric polynomials, combined with a trapezoidal rule approximation of the integrals. Before discretization the equation is transformed using a nonlinear (mesh grading) parametrization of the boundary curve which has the effect of smoothing out the singularities at the corners and yields fast convergence of the approximate solutions. The convergence results are illustrated with some numerical examples.


  1. 1.
    Ang, W.-T.: Hypersingular Integral Equations in Fracture Analysis. Elsevier Science and Technology, Amsterdam (2013)zbMATHGoogle Scholar
  2. 2.
    Atkinson, K.E.: A discrete Galerkin method for first kind integral equations with a logarithmic kernel. J. Integral Equ. Appl. 1, 343–363 (1988)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Atkinson, K.E., Sloan, I.H.: The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs. Math. Comput. 56, 119–139 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Costabel, M., Stephan, E.P.: The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl. Anal. 16, 205–228 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Davis, P.J., Rabinowitz, P.: Numerical Integration. Blaisdell, Waltham (1967)zbMATHGoogle Scholar
  6. 6.
    Elschner, J., Graham, I.G.: An optimal order collocation method for first kind boundary integral equations on polygons. Numer. Math. 70, 1–31 (1995)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Elschner, J., Graham, I.G.: Quadrature methods for Symm’s integral equation on polygons. IMA J. Numer. Anal. 17, 643–664 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Elschner, J., Stephan, E.P.: A discrete collocation method for Symm’s integral equation on curves with corners. J. Comput. Appl. Math. 75, 131–146 (1996)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Elschner, J., Jeon, Y., Sloan, I.H., Stephan, E.P.: The collocation method for mixed boundary value problems in domains with curved polygonal boundaries. Numer. Math. 76, 355–381 (1997)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jeon, Y.: A quadrature for the Cauchy singular integral equations. J. Integral Equ. Appl. 7, 425–461 (1995)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kieser, R., Kleemann, B., Rathsfeld A.: On a full discretization scheme for a hypersingular integral equation over smooth curves. Zeitschrift für Analysis und ihre Anwendungen 11, 385–396 (1992)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krishnasamy, G., Schmerr, L.W., Rudolphi, T.J., Rizzo F.J.: Hypersingular boundary integral equations: some applications in acoustic and elastic wave scattering. J. Appl. Mech. 57, 404–414 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lifanov, I.K., Poltavskiii, L.N., Vainikko, G.M.: Hypersingular Integral Equations and Their Applications. CRC Press, New York (2003)CrossRefGoogle Scholar
  14. 14.
    Prössdorf, S., Rathsfeld, A.: Quadrature methods for strongly elliptic singular integral equations on an interval. In: Operator Theory: Advances and Applications, vol. 41, pp. 435–471. Birkhäuser, Basel (1989)Google Scholar
  15. 15.
    Prössdorf, S., Silbermann, B.: Projektionsverfahren und die näherungsweise Lösung singulärer Gleichungen. Teubner, Leipzig (1977)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hochschule UlmUlmGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations