Advertisement

On the Representation of Symmetric and Antisymmetric Tensors

  • Wolfgang HackbuschEmail author
Chapter

Abstract

Various tensor formats are used for the data-sparse representation of large-scale tensors. Here we investigate how symmetric or antisymmetric tensors can be represented. We mainly investigate the hierarchical format, but also the use of the canonical format is mentioned.

References

  1. 1.
    Abo, H., Vannieuwenhoven, N.: Most secant varieties of tangential varieties to Veronese varieties are nondefective. Trans. Am. Math. Soc. 370, 393–420 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abo, H., Ottoviani, G., Peterson, C.: Non-defectivity of Grassmannians of planes. J. Algebr. Geom. 21, 1–20 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bach, V., Delle, L. (eds.): Many-Electron Approaches in Physics, Chemistry and Mathematics. Springer, Cham (2014)Google Scholar
  4. 4.
    Beylkin, G., Mohlenkamp, M.J., Pérez, F.: Approximating a wavefunction as an unconstrained sum of Slater determinants. J. Math. Phys. 49, 032107 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bohn, B., Griebel, M.: An adaptive sparse grid approach for time series prediction. In: Garcke, J., Griebel, M. (eds.): Sparse Grids and Applications, Bonn, May 2011. Lecture Notes in Computational Science and Engineering, vol. 88, pp. 1–30. Springer, Berlin (2013)Google Scholar
  6. 6.
    Buczyński, J., Landsberg, J.M.: On the third secant variety. J. Algebr. Comb. 40, 475–502 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cayley, A.: An introductory memoir on quantics. Philos. Trans. R. Soc. Lond. 144, 245–258 (1854)CrossRefGoogle Scholar
  8. 8.
    Comon, P., Golub, G.H., Lim, L.H., Mourrain, B.: Symmetric tensors and symmetric tensor rank. SIAM J. Matrix Anal. Appl. 30, 1254–1279 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Garcke, J., Griebel, M. (eds.): Sparse Grids and Applications, Bonn, May 2011. Lecture Notes in Computational Science and Engineering, vol. 88. Springer, Berlin (2013)Google Scholar
  10. 10.
    Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. SSCM, vol. 42. Springer, Berlin (2012)CrossRefGoogle Scholar
  11. 11.
    Håstad, J.: Tensor rank is NP-complete. J. Algorithms 11, 644–654 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)CrossRefGoogle Scholar
  13. 13.
    Legeza, O., Rohwedder, T., Schneider, R., Szalay, S.: Tensor product approximation (DMRG) and coupled cluster method in quantum chemistry. In: Bach, V., Delle, L. (eds.): Many-Electron Approaches in Physics, Chemistry and Mathematics, pp. 53–76. Springer, Cham (2014)Google Scholar
  14. 14.
    Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  15. 15.
    Löwdin, P.O.: Quantum theory for many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. 97(6), 1474–1489 (1955)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33, 2295–2317 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Valiant, L.G.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201 (1979)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Max-Planck-Institut Mathematik in den NaturwissenschaftenLeipzigGermany

Personalised recommendations