Advertisement

Modern Monte Carlo Variants for Uncertainty Quantification in Neutron Transport

  • Ivan G. GrahamEmail author
  • Matthew J. Parkinson
  • Robert Scheichl
Chapter

Abstract

We describe modern variants of Monte Carlo methods for Uncertainty Quantification (UQ) of the Neutron Transport Equation, when it is approximated by the discrete ordinates method with diamond differencing. We focus on the mono-energetic 1D slab geometry problem, with isotropic scattering, where the cross-sections are log-normal correlated random fields of possibly low regularity. The paper includes an outline of novel theoretical results on the convergence of the discrete scheme, in the cases of both spatially variable and random cross-sections. We also describe the theory and practice of algorithms for quantifying the uncertainty of a functional of the scalar flux, using Monte Carlo and quasi-Monte Carlo methods, and their multilevel variants. A hybrid iterative/direct solver for computing each realisation of the functional is also presented. Numerical experiments show the effectiveness of the hybrid solver and the gains that are possible through quasi-Monte Carlo sampling and multilevel variance reduction. For the multilevel quasi-Monte Carlo method, we observe gains in the computational ε-cost of up to two orders of magnitude over the standard Monte Carlo method, and we explain this theoretically. Experiments on problems with up to several thousand stochastic dimensions are included.

Notes

Acknowledgements

We thank EPSRC and AMEC Foster Wheeler for financial support for this project and we particularly thank Professor Paul Smith (AMECFW) for many helpful discussions. Matthew Parkinson is supported by the EPSRC Centre for Doctoral Training in Statistical Applied Mathematics at Bath (SAMBa), under project EP/L015684/1. This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath.

References

  1. 1.
    Allen, E.J., Victory Jr., H.D., Ganguly, K.: On the convergence of finite-differenced multigroup, discrete-ordinates methods for anisotropically scattered slab media. SIAM J. Numer. Anal. 26, 88–106 (1989)Google Scholar
  2. 2.
    Asadzadeh, M.: A finite element method for the neutron transport equation in an infinite cylindrical domain. SIAM J. Numer. Anal. 35, 1299–1314 (1998)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Asadzadeh, M., Thevenot, L.: On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue. Nuovo Cimento C 33, 21–29 (2010)Google Scholar
  4. 4.
    Ayres, D.A.F., Eaton, M.D.: Uncertainty quantification in nuclear criticality modelling using a high dimensional model representation. Ann. Nucl. Energy 80, 379–402 (2015)CrossRefGoogle Scholar
  5. 5.
    Ayres, D.A.F., Park, S., Eaton, M.D.: Propagation of input model uncertainties with different marginal distributions using a hybrid polynomial chaos expansion. Ann. Nucl. Energy 66, 1–4 (2014)CrossRefGoogle Scholar
  6. 6.
    Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119, 123–161 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Blake, J.C.H.: Domain decomposition methods for nuclear reactor modelling with diffusion acceleration. Ph.D. Thesis, University of Bath (2016)Google Scholar
  9. 9.
    Charrier, J., Scheichl, R., Teckentrup, A.L.: Finite element error analysis of elliptic PDEs with random coefficients and its application to multilevel Monte Carlo methods. SIAM J. Numer. Anal. 51, 322–352 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14, 3–15 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Physical Origins and Classical Methods, vol. 1. Springer, Heidelberg (2012)Google Scholar
  12. 12.
    Dick, J., Kuo, F.Y., Le Gia, Q.T., Nuyens, D., Schwab, C.: Higher order QMC Petrov–Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52, 2676–2702 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Dick, J., Kuo, F.Y., Le Gia, Q.T., Schwab, C.: Multi-level higher order QMC Galerkin discretization for affine parametric operator equations. SIAM J. Numer. Anal. 54, 2541–2568 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dick, J., Pillichshammer, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge (2010)Google Scholar
  16. 16.
    Eiermann, M., Ernst, O.G., Ullmann, E.: Computational aspects of the stochastic finite element method. Comput. Vis. Sci. 10, 3–15 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fichtl, E.D., Prinja, A.K.: The stochastic collocation method for radiation transport in random media. J. Quant. Spectrosc. Radiat. Tran. 112(4), 646–659 (2011)CrossRefGoogle Scholar
  18. 18.
    Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Giles, M.B., Waterhouse, B.J.: Multilevel quasi-Monte Carlo path simulation. In: Advanced Financial Modelling. Radon Series on Computational and Applied Mathematics, pp. 165–181 (2009)Google Scholar
  21. 21.
    Gilli, L., Lathouwers, D., Kloosterman, J.L., van der Hagen, T.H.J.J., Koning, A.J., Rochman, D.: Uncertainty quantification for criticality problems using non-intrusive and adaptive polynomial chaos techniques. Ann. Nucl. Energy 56, 71–80 (2013)CrossRefGoogle Scholar
  22. 22.
    Goda, T., Dick, J.: Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Found. Comput. Math. 15, 1245–1278 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Graham, I.G., Kuo, F.Y., Nichols, J.A., Scheichl, R., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131, 329–368 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Graham, I.G., Kuo, F.Y., Nuyens, D., Scheichl, R., Sloan, I.H.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Graham, I.G., Parkinson, M.J., Scheichl, R.: Error analysis and uncertainty quantification for the heterogenous transport equation in slab geometry (2018, in preparation)Google Scholar
  26. 26.
    Gunzburger, M., Webster, C.G., Zhang, G.: Stochastic finite element methods for PDEs with random input data. Acta Numer. 23, 521–650 (2014)Google Scholar
  27. 27.
    Haji-Ali, A.L., Nobile, F., Tempone, R.: Multi-index Monte Carlo: when sparsity meets sampling. Numer. Math. 132, 767–806 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Heinrich, S.: Multilevel Monte Carlo methods. Lecture Notes in Computer Science, vol. 2179. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Kaper, H.G., Kellogg, R.B.: Asymptotic behavior of the solution of the integral transport equation in slab geometry. SIAM J. Appl. Math. 32(1), 191–200 (1977)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Keller, H.B.: On the pointwise convergence of the discrete-ordinates method. SIAM J. Appl. Math. 8, 560–567 (1960)MathSciNetCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Kuo, F.Y., Scheichl, R., Schwab, C., Sloan, I.H., Ullmann, E.: Multilevel quasi-Monte Carlo methods for lognormal diffusion problems. Math. Comput. 86, 2827–2860 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Kuo, F.Y., Schwab, C., Sloan, I.H.: Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficient. SIAM J. Numer. Anal. 50, 3351–3374 (2012)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Kuo, F.Y., Schwab, C., Sloan, I.H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15, 411–449 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Larsen, E.W., Nelson, P.: Finite difference approximations and superconvergence for the discrete-ordinate equations in slab geometry. SIAM J. Numer. Anal. 19, 334–348 (1982)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Lee, C.W., Lee, Y.O., Cho. Y.S.: Comparison of the nuclear data libraries in the shielding calculation for the accelerator facility of the Proton Engineering Frontier Project in Korea. In: International Conference on Nuclear Data for Science and Technology. EDP Sciences, Les Ulis (2007)Google Scholar
  37. 37.
    Lewis, E.E., Miller, W.F.: Computational Methods of Neutron Transport. Wiley, New York (1984)zbMATHGoogle Scholar
  38. 38.
    Lord, G.J., Powell, C.E. Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  39. 39.
    Niederreiter, H.: Quasi-Monte Carlo Methods. Wiley, New York (2010)CrossRefGoogle Scholar
  40. 40.
    Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903–920 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Pitkaranta, J., Scott, L.R.: Error estimates for the combined spatial and angular approximations of the transport equation for slab geometry. SIAM J. Numer. Anal. 20, 922–950 (1983)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73–479. Los Alamos National Laboratory (1973)Google Scholar
  44. 44.
    Sanchez, R., McCormick, N.J.: Review of neutron transport approximations. Nucl. Sci. Eng. 80, 481–535 (1982)CrossRefGoogle Scholar
  45. 45.
    Sloan, I.H.: Error analysis for a class of degenerate-kernel methods. Numer. Math. 25, 231–238 (1975)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Sloan, I.H., Wozniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals? J. Complexity 14, 1–33 (1998)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Teckentrup, A.L., Jantsch, P., Webster, C.G., Gunzburger, M.: A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA JUQ 3, 1046–1074 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Victory Jr., H.D.: Convergence of the multigroup approximations for subcritical slab media and applications to shielding calculations. Adv. Appl. Math. 5, 227–259 (1984)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 614–644 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ivan G. Graham
    • 1
    Email author
  • Matthew J. Parkinson
    • 1
  • Robert Scheichl
    • 1
  1. 1.University of BathBathUK

Personalised recommendations