A Note on Some Approximation Kernels on the Sphere

  • Peter Grabner


We produce precise estimates for the Kogbetliantz kernel for the approximation of functions on the sphere. Furthermore, we propose and study a new approximation kernel, which has slightly better properties.



The author is supported by the Austrian Science Fund FWF projects F5503 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”) and W1230 (Doctoral Program “Discrete Mathematics”). The author is grateful to two anonymous referees for their many helpful comments.


  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Berens, H., Butzer, P.L., Pawelke, S.: Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. Res. Inst. Math. Sci. Ser. A 4, 201–268 (1968/1969)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kogbetliantz, E.: Recherches sur la sommabilité; des séries ultra-sphériques par la méthode des moyennes arithmétiques. J. Math. Pures Appl. 3, 107–188 (1924)zbMATHGoogle Scholar
  4. 4.
    Reimer, M.: A short proof of a result of Kogbetliantz on the positivity of certain Cesàro means. Math. Z 221(2), 189–192 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Analysis und ZahlentheorieTechnische Universität GrazGrazAustria

Personalised recommendations