Advertisement

A Note on Some Approximation Kernels on the Sphere

  • Peter Grabner
Chapter

Abstract

We produce precise estimates for the Kogbetliantz kernel for the approximation of functions on the sphere. Furthermore, we propose and study a new approximation kernel, which has slightly better properties.

Notes

Acknowledgements

The author is supported by the Austrian Science Fund FWF projects F5503 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”) and W1230 (Doctoral Program “Discrete Mathematics”). The author is grateful to two anonymous referees for their many helpful comments.

References

  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Berens, H., Butzer, P.L., Pawelke, S.: Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten. Publ. Res. Inst. Math. Sci. Ser. A 4, 201–268 (1968/1969)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kogbetliantz, E.: Recherches sur la sommabilité; des séries ultra-sphériques par la méthode des moyennes arithmétiques. J. Math. Pures Appl. 3, 107–188 (1924)zbMATHGoogle Scholar
  4. 4.
    Reimer, M.: A short proof of a result of Kogbetliantz on the positivity of certain Cesàro means. Math. Z 221(2), 189–192 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Analysis und ZahlentheorieTechnische Universität GrazGrazAustria

Personalised recommendations