Towards an Efficient Finite Element Method for the Integral Fractional Laplacian on Polygonal Domains

  • Mark AinsworthEmail author
  • Christian Glusa


We explore the connection between fractional order partial differential equations in two or more spatial dimensions with boundary integral operators to develop techniques that enable one to efficiently tackle the integral fractional Laplacian. In particular, we develop techniques for the treatment of the dense stiffness matrix including the computation of the entries, the efficient assembly and storage of a sparse approximation and the efficient solution of the resulting equations. The main idea consists of generalising proven techniques for the treatment of boundary integral equations to general fractional orders. Importantly, the approximation does not make any strong assumptions on the shape of the underlying domain and does not rely on any special structure of the matrix that could be exploited by fast transforms. We demonstrate the flexibility and performance of this approach in a couple of two-dimensional numerical examples.



This work was supported by the MURI/ARO on “Fractional PDEs for Conservation Laws and Beyond: Theory, Numerics and Applications” (W911NF-15-1-0562).


  1. 1.
    Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. ArXiv e-prints (2015)Google Scholar
  2. 2.
    Acosta, G., Bersetche, F.M., Borthagaray, J.P.: A short FE implementation for a 2d homogeneous Dirichlet problem of a Fractional Laplacian. ArXiv e-prints (2016)Google Scholar
  3. 3.
    Ainsworth, M., Glusa, C.: Aspects of an adaptive finite element method for the fractional Laplacian: a priori and a posteriori error estimates, efficient implementation and multigrid solver. Comput. Methods Appl. Mech. Eng. 327, 4–35 (2017). Doi: 10.1016/j.cma.2017.08.019MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ainsworth, M., McLean, W., Tran, T.: The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36(6), 1901–1932 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bogdan, K., Burdzy, K., Chen, Z.Q.: Censored stable processes. Probab. Theory Relat. Fields 127(1), 89–152 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Borthagaray, J.P., Del Pezzo, L.M., Martinez, S.: Finite element approximation for the fractional eigenvalue problem. ArXiv e-prints (2016)Google Scholar
  7. 7.
    Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(8), 1245–1260 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Z.Q., Kim, P.: Green function estimate for censored stable processes. Probab. Theory Relat. Fields 124(4), 595–610 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ciarlet, P.: Analysis of the Scott–Zhang interpolation in the fractional order Sobolev spaces. J. Numer. Math. 21(3), 173–180 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66(7), 1245–1260 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Duffy, M.G.: Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19(6), 1260–1262 (1982)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Erichsen, S., Sauter, S.A.: Efficient automatic quadrature in 3-d Galerkin BEM. Comput. Methods Appl. Mech. Eng. 157(3–4), 215–224 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences, vol. 159. Springer, New York, NY (2004)CrossRefGoogle Scholar
  14. 14.
    Getoor, R.K.: First passage times for symmetric stable processes in space. Trans. Am. Math. Soc. 101(1), 75–90 (1961)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Golovin, A.A., Matkowsky, B.J., Volpert, V.A.: Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math. 69(1), 251–272 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Graham, I.G., Hackbusch, W., Sauter, S.A.: Hybrid Galerkin boundary elements: theory and implementation. Numer. Math. 86(1), 139–172 (2000)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54(4), 463–491 (1989)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Koto, T.: IMEX Runge–Kutta schemes for reaction–diffusion equations. J. Comput. Appl. Math. 215(1), 182–195 (2008)MathSciNetCrossRefGoogle Scholar
  19. 19.
    McLean, W.C.H.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, (2000)zbMATHGoogle Scholar
  20. 20.
    Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus, de Gruyter Studies in Mathematics, vol. 43. Walter de Gruyter & Co., Berlin (2012)zbMATHGoogle Scholar
  21. 21.
    Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15(3), 733–791 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sauter, S.A., Schwab, C.: Boundary Element Methods, pp. 183–287. Springer, Berlin (2011)CrossRefGoogle Scholar
  23. 23.
    Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Servadei, R., Valdinoci, E.: On the spectrum of two different fractional operators. Proc. Roy. Soc. Edinb.: Sect. A Math. 144(04), 831–855 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sloan, I.H.: Error analysis of boundary integral methods. Acta Numer. 1, 287–339 (1992)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Sloan, I.H., Spence, A.: The Galerkin method for integral equations of the first kind with logarithmic kernel: theory. IMA J. Numer. Anal. 8(1), 105–122 (1988)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs, NJ (1971)zbMATHGoogle Scholar
  29. 29.
    Valdinoci, E.: From the long jump random walk to the fractional Laplacian. SeMA J.: Boletín de la Sociedad Española de Matemática Aplicada 49, 33–44 (2009)Google Scholar
  30. 30.
    West, B.J.: Fractional Calculus View of Complexity: Tomorrow’s Science. CRC Press, New York (2016)zbMATHGoogle Scholar
  31. 31.
    Yan, Y., Sloan, I.H., et al.: On integral equations of the first kind with logarithmic kernels. J. Integral Equ. Appl. 1, 549–579 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Applied MathematicsBrown UniversityProvidenceUSA
  2. 2.Computer Science and Mathematics DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Center for Computing ResearchSandia National LaboratoriesAlbuquerqueUSA
  4. 4.Division of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations