An Adaptive Filon Algorithm for Highly Oscillatory Integrals

  • Jing Gao
  • Arieh IserlesEmail author


Based on the error analysis of Extended Filon Method (EFM), we present an adaptive Filon method to calculate highly oscillatory integrals. The main idea is to allow interpolation points depend upon underlying frequency in order to minimize the error. Typically, quadrature error need be examined in two regimes. Once frequency is large, asymptotic behaviour dominates and we need to choose interpolation points accordingly, while for small frequencies good choice of interpolation points is similar to classical, non-oscillatory quadrature. In this paper we choose frequency-dependent interpolation points according to a smooth homotopy function and the accuracy is superior to other EFMs. The basic algorithm is presented in the absence of stationary points but we extend it to cater for highly oscillatory integrals with stationary points. The presentation is accompanied by numerical experiments which demonstrate the power of our approach.



The work of the first author has been supported by the Projects of International Cooperation and Exchanges NSFC-RS (Grant No. 11511130052), the Key Science and Technology Program of Shaanxi Province of China (Grant No. 2016GY-080) and the Fundamental Research Funds for the Central Universities.


  1. 1.
    Asheim, A., Huybrechs, D.: Complex Gaussian quadrature for oscillatory integral transforms. IMA J. Numer. Anal. 33(4), 1322–1341 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chandler-Wilde, S.N., Graham, I.G., Langdon S., Spence, E.A.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Deaño, A., Huybrechs, D., Iserles, A.: The kissing polynomials and their Hankel determinants. Technical Report, DAMTP, University of Cambridge (2015)Google Scholar
  4. 4.
    Domínguez, V., Ganesh, M.: Interpolation and cubature approximations and analysis for a class of wideband integrals on the sphere. Adv. Comput. Math. 39(3–4), 547–584 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Domínguez, V., Graham, I.G., Smyshlyaev, V.P.: Stability and error estimates for Filon–Clenshaw–Curtis rules for highly oscillatory integrals. IMA J. Numer. Anal. 31(4), 1253–1280 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ganesh, M., Langdon, S., Sloan, I.H.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204(2), 363–374 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gao, J., Iserles, A.: A generalization of Filon–Clenshaw–Curtis quadrature for highly oscillatory integrals. BIT Numer. Math. 57, 943–961 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gao, J., Iserles, A.: Error analysis of the extended Filon-type method for highly oscillatory integrals. Res. Math. Sci. 4(21/24) (2017).
  9. 9.
    Huybrechs, D., Vandewalle, S.: On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal. 44(3), 1026–1048 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Iserles, A., Nørsett, S.P.: On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math. 44(4), 755–772 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Iserles, A., Nørsett, S.P.: Efficient quadrature of highly oscillatory integrals using derivatives. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 461(2057), 1383–1399 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67(1), 95–101 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Olver, S.: Moment-free numerical integration of highly oscillatory functions. IMA J. Numer. Anal. 26(2), 213–227 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Trevelyan, J., Honnor, M.E.: A numerical coordinate transformation for efficient evaluation of oscillatory integrals over wave boundary elements. J. Integral Equ. Appl. 21(3), 447–468 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Van’t Wout, E., Gélat, P., Timo, B., Simon, A.: A fast boundary element method for the scattering analysis of high-intensity focused ultrasound. J. Acoust. Soc. Am. 138(5), 2726–2737 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhao, L.B., Huang, C.M.: An adaptive Filon-type method for oscillatory integrals without stationary points. Numer. Algorithms 75(3), 753–775 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  2. 2.DAMTP, Centre for Mathematical SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations