Advertisement

Hyperinterpolation for Spectral Wave Propagation Models in Three Dimensions

  • Mahadevan GaneshEmail author
  • Stuart C. Hawkins
Chapter

Abstract

In this review article, we describe some advances in applications of the hyperinterpolation operator introduced by Sloan about two decades ago (J Approx Theory 83:238–254, 1995). In particular, our focus is on reviewing the application of the scalar and vector-valued hyperinterpolation approximations for developing, analyzing and implementing fully-discrete high-order algorithms. Such approximations facilitate efficient simulation of scattering of acoustic, electromagnetic and elastic waves, exterior to connected and disconnected bounded three dimensional domains. The main contributions of this article are: (1) a unified (acoustic, electromagnetic, and elastic) approach for the three important classes of waves; (2) theoretical and numerical comparisons of the hyperinterpolation approximations in these three applications; and (3) new results for a class of unbounded heterogeneous media.

Notes

Acknowledgements

Part of this work was carried out while MG was a Visiting Professorial Fellow at University of New South Wales (UNSW) in 2016, funded by an Australian Research Council (ARC) grant. Support of the ARC and the Colorado Golden Energy Computing Organization (GECO) are gratefully acknowledged.

References

  1. 1.
    Ahrens, C., Beylkin, G.: Rotationally invariant quadratures for the sphere. Proc. R. Soc. A 465, 3103–3125 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bagheri, S., Hawkins, S.C.: A coupled FEM-BEM algorithm for the inverse acoustic medium problem. ANZIAM J. 56, C163–C178 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brink, D.M., Satchler, G.R.: Angular Momentum, 2nd edn. Clarendon Press, Oxford (1968)zbMATHGoogle Scholar
  4. 4.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Cools, R., Poppe, K.: Chebyshev lattices, a unifying framework for cubature with Chebyshev weight function. BIT 51, 275–288 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dai, F.: On generalized hyperinterpolation on the sphere. Proc. Am. Math. Soc. 134, 2931–2941 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Das, P., Nelakanti, G.: Convergence analysis of discrete Legendre spectral projection methods for Hammerstein integral equations of mixed type. Appl. Math. Comput. 265, 574–601 (2015)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Delbary, F., Hansen, P.C., Knudsen, K.: Electrical impedance tomography: 3D reconstructions using scattering transforms. Appl. Anal. 91, 737–755 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Epstein, C., Greengard, L.: Debye sources and the numerical solution of the time harmonic Maxwell equations. Commun. Pure Appl. Math. 63, 413–463 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press, Oxford (1998)zbMATHGoogle Scholar
  11. 11.
    Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ganesh, M., Hawkins, S.C.: A hybrid high-order algorithm for radar cross section computations. SIAM J. Sci. Comput. 29, 1217–1243 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ganesh, M., Hawkins, S.C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comput. Phys. 227, 4543–4562 (2008)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ganesh, M., Hawkins, S.C.: Simulation of acoustic scattering by multiple obstacles in three dimensions. ANZIAM J. 50, 31–45 (2008)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ganesh, M., Hawkins, S.C.: A high-order algorithm for multiple electromagnetic scattering in three dimensions. Numer. Algorithms 50, 469–510 (2009)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ganesh, M., Hawkins, S.C.: An efficient \(\mathcal {O}({N})\) algorithm for computing \(\mathcal {O}({N}^2)\) acoustic wave interactions in large N-obstacle three dimensional configurations. BIT Numer. Math. 55, 117–139 (2015)Google Scholar
  18. 18.
    Ganesh, M., Hawkins, S.C.: A high performance computing and sensitivity analysis algorithm for stochastic many-particle wave scattering. SIAM J. Sci. Comput. 37, A1475–A1503 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ganesh, M., Morgenstern, C.: High-order FEM-BEM computer models for wave propagation in unbounded and heterogeneous media: application to time-harmonic acoustic horn problem. J. Comput. Appl. Math. 37, 183–203 (2016)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ganesh, M., Graham, I.G., Sivaloganathan, J.: A pseudospectral three-dimensional boundary integral method applied to a nonlinear model problem from finite elasticity. SIAM. J. Numer. Anal. 31, 1378–1414 (1994)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ganesh, M., Hawkins, S.C., Volkov, D.: An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: reformulation and well-posedness analysis. J. Math. Anal. Appl. 412, 277–300 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gentile, M., Sommariva, A., Vianello, M.: Polynomial approximation and quadrature on geographic rectangles. Appl. Math. Comput. 297, 159–179 (2017)MathSciNetGoogle Scholar
  23. 23.
    Golberg, M.A., Chen, C.S., Bowman, H.: Some recent results and proposals for the use of radial basis functions in the BEM. Eng. Anal. Bound. Elem. 23, 285–296 (1999)CrossRefGoogle Scholar
  24. 24.
    Gräf, M., Kunis, S., Potts, D.: On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27, 124–132 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Graham, I.G., Sloan, I.H.: Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in \(\mathbb {R}^3\). Numer. Math. 92, 289–323 (2002)Google Scholar
  26. 26.
    Gronwall, T.H.: On the degree of convergence of the Laplace series. Trans. Am. Math. Soc. 22, 1–30 (1914)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hansen, O., Atkinson, K., Chien, D.: On the norm of the hyperinterpolation operator on the unit disc and its use for the solution of the nonlinear Poisson equation. IMA J. Numer. Anal. 29, 257–283 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hellmers, J., Eremina, E., Wriedt, T.: Simulation of light scattering by biconcave Cassini ovals using the nullfield method with discrete sources. J. Opt. A Pure Appl. Opt. 8, 1–9 (2006)CrossRefGoogle Scholar
  29. 29.
    Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. Handbook of Geomathematics, pp. 2671–2710. Springer, Berlin (2015)CrossRefGoogle Scholar
  30. 30.
    Kazashi, Y.: A fully discretised polynomial approximation on spherical shells. GEM Int. J. Geomath. 7, 299–323 (2016)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Kress, R.: Linear Integral Equations, 2nd edn. Springer, New York (1999)CrossRefGoogle Scholar
  32. 32.
    Kulkarni, R.P., Gnaneshwar, N.: Iterated discrete polynomially based Galerkin methods. Appl. Math. Comput. 146, 153–165 (2003)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kupradze, V.D.: Three-Dimensional Problems of Elasticity and Thermoelasticity, vol. 25. Elsevier, Amsterdam (1979)Google Scholar
  34. 34.
    Langdon, S., Graham, I.G.: Boundary integral methods for singularly perturbed boundary value problems. IMA J. Numer. Anal. 21, 217–237 (2001)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Le Gia, Q.T., Mhaskar, H.N.: Localised linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47, 440–466 (2008)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Le Gia, Q.T., Sloan, I.H., Wang, Y.G., Womersley, R.S.: Needlet approximation for isotropic random fields on the sphere. J. Approx. Theory 216, 86–116 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Leopardi, P.C.: Positive weight quadrature on the sphere and monotonicities of Jacobi polynomials. Numer. Algorithms 45, 75–87 (2007)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Li, X.: Rate of convergence of the method of fundamental solutions and hyperinterpolation for modified Helmholtz equations on the unit ball. Adv. Comput. Math. 29, 393–413 (2008)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Li, X., Chen, C.S.: A mesh free method using hyperinterpolation and fast Fourier transform for solving differential equations. Eng. Anal. Bound. Elem. 28, 1253–1260 (2004)CrossRefGoogle Scholar
  40. 40.
    Le Louër, F.: A high order spectral algorithm for elastic obstacle scattering in three dimensions. J. Comput. Phys. 279, 1–17 (2014)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Le Louër, F.: Spectrally accurate numerical solution of hypersingular boundary integral equations for three-dimensional electromagnetic wave scattering problems. J. Comput. Phys. 275, 662–666 (2014)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Nousiainen, T., McFarquhar, G.M.: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61, 2229–2248 (2004)CrossRefGoogle Scholar
  43. 43.
    Pieper, M.: Vector hyperinterpolation on the sphere. J. Approx. Theory 156, 173–186 (2009)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Poppe, K., Cools, R.: CHEBINT: A MATLAB/Octave toolbox for fast multivariate integration and interpolation based on Chebyshev approximations over hypercubes. ACM Trans. Math. Softw. 40(1), Article 2 (2013)CrossRefGoogle Scholar
  45. 45.
    Reimer, M.: Hyperinterpolation on the sphere at the minimal projection order. J. Approx. Theory 104, 272–286 (2000)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Reimer, M.: Generalized hyperinterpolation on the sphere and the Newman-Shapiro operators. Constr. Approx. 18, 183–203 (2002)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Sloan, I.H.: Polynomial interpolation and hyperinterpolation over general regions. J. Approx. Theory 83, 238–254 (1995)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Sloan, I.H., Womersley, R.S.: Constructive polynomial approximation on the sphere. J. Approx. Theory 103, 91–118 (2000)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Sloan, I.H., Womersley, R.S.: Filtered hyperinterpolation: a constructive polynomial approximation on the sphere. GEM Int. J. Geomath. 3, 95–117 (2012)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Veihelmann, B., Nousiainen, T., Kahnert, M., van der Zande, W.J.: Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry. J. Quant. Spectrosc. Radiat. Transf. 100, 393–405 (2005)CrossRefGoogle Scholar
  51. 51.
    Womersley, R.S., Sloan, I.H.: How good can polynomial interpolation on the sphere be? Adv. Comput. Math. 14, 195–226 (2001)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Woo, A.C., Wang, H.T., Schuh, M.J., Sanders, M.L.: Benchmark radar targets for the validation of computational electromagnetics programs. IEEE Antennas Propag. Mag. 35, 84–89 (1993)CrossRefGoogle Scholar
  53. 53.
    Wriedt, T., Hellmers, J., Eremina, E., Schuh, R.: Light scattering by single erythrocyte: comparison of different methods. J. Quant. Spectrosc. Radiat. Transf. 100, 444–456 (2006)CrossRefGoogle Scholar
  54. 54.
    Zygmund, A.: Trigonometric Series, vol. I, 3rd edn. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied Mathematics & StatisticsColorado School of MinesGoldenUSA
  2. 2.Department of MathematicsMacquarie UniversitySydneyAustralia

Personalised recommendations