Probabilistic Lower Bounds for the Discrepancy of Latin Hypercube Samples

  • Benjamin Doerr
  • Carola Doerr
  • Michael GnewuchEmail author


We provide probabilistic lower bounds for the star discrepancy of Latin hypercube samples. These bounds are sharp in the sense that they match the recent probabilistic upper bounds for the star discrepancy of Latin hypercube samples proved in Gnewuch and Hebbinghaus (Discrepancy bounds for a class of negatively dependent random points including Latin hypercube samples. Preprint 2016). Together, this result and our work implies that the discrepancy of Latin hypercube samples differs at most by constant factors from the discrepancy of uniformly sampled point sets.



The authors thank two anonymous referees for their comments which helped to improve the presentation of the paper.

Part of this work was done while Michael Gnewuch was visiting the Laboratoire d’Informatique (LIX) as Chercheur Invité of École Polytechnique. He likes to thank the colleagues from LIX for their hospitality.


  1. 1.
    Aistleitner, C.: Covering numbers, dyadic chaining and discrepancy. J. Complex. 27, 531–540 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Doerr, B.: A lower bound for the discrepancy of a random point set. J. Complex. 30, 16–20 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ehm, W.: Binomial approximation to the Poisson binomial distribution. Stat. Probab. Lett. 11, 7–16 (1991)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gnewuch, M., Hebbinghaus, N.: Discrepancy bounds for a class of negatively dependent random points including Latin hypercube samples. Preprint (2016)Google Scholar
  6. 6.
    Heinrich, S.: Some open problems concerning the star-discrepancy. J. Complex. 19 (Oberwolfach Special Issue), 416–419 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heinrich, S., Novak, E., Wasilkowski, G.W., Woźniakowski, H.: The inverse of the star-discrepancy depends linearly on the dimension. Acta Arith. 96, 279–302 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hickernell, F. J., Sloan, I.H., Wasilkowski, G.W.: On tractability of weighted integration over bounded and unbounded regions in \({\mathbb {R}}^s\). Math. Comput. 73, 1885–1902 (2004)Google Scholar
  9. 9.
    Hinrichs, A.: Covering numbers, Vapnik-Červonenkis classes and bounds for the star-discrepancy. J. Complex. 20, 477–483 (2004)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Statist. Assoc. 58, 13–30 (1963)Google Scholar
  11. 11.
    Künsch, H.R.: The difference between the hypergeometric and the binomial distribution. Note, ETH Zürich (1998)Google Scholar
  12. 12.
    McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. SIAM, Philadelphia (1992)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.École PolytechniqueLIX - UMR 7161PalaiseauFrance
  2. 2.Sorbonne UniversitésUPMC Univ Paris 06, CNRS, LIP6 UMR 7606ParisFrance
  3. 3.Christian-Albrechts-Universität KielMathematisches SeminarKielGermany

Personalised recommendations