Numerical Analysis and Computational Solution of Integro-Differential Equations

  • Hermann BrunnerEmail author


The aim of this paper is to describe the current state of the numerical analysis and the computational solution of non-standard integro-differential equations of Volterra and Fredholm types that arise in various applications. In order to do so, we first give a brief review of recent results concerning the numerical analysis of standard (ordinary and partial) Volterra and Fredholm integro-differential equations, with the focus being on collocation and (continuous and discontinuous) Galerkin methods. In the second part of the paper we look at the extension of these results to various classes of non-standard integro-differential equations type that arise as mathematical models in applications. We shall see that in addition to numerous open problems in the numerical analysis of such equations, many challenges in the computational solution of non-standard Volterra and Fredholm integro-differential equations are waiting to be addressed.



The paper is an extended and updated version of an invited plenary talk presented during the 2013 Biennial Conference on Numerical Analysis at the University of Strathclyde in Glasgow (Scotland). The research was supported by the Hong Kong Research Grants Council (GRF Grant No. HKBU 200210 and HKBU 12300014) and the Natural Sciences and Engineering Research Council of Canada (Discovery Grant No. 9406).

I thank the two reviewers for their careful reading of the original manuscript and for their valuable comments.


  1. 1.
    Adolfsson, K., Enelund, M., Larsson, S.: Adaptive discretization on an integro-differential equation with a weakly singular kernel. Comput. Methods Appl. Mech. Eng. 192, 5285–5304 (2003)Google Scholar
  2. 2.
    Appell, J.M., Kalitvin, A.S., Zabrejko, P.P.: Partial Integral Operators and Integro-Differential Equations. Marcel Dekker, New York (2000)zbMATHGoogle Scholar
  3. 3.
    Audounet, J., Roquejoffre, J.M., Rouzaud, H.: Numerical simulation of a point-source initiated flame ball with heat loss. M2AN Math. Mod. Numer. Anal. 36, 273–291 (2002)Google Scholar
  4. 4.
    Aves, M.A., Davies, P.J., Higham, D.J.: The effect of quadrature on the dynamics of a discretized nonlinear integro-differential equation. Appl. Numer. Math. 32, 1–20 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bandle, C., Brunner, H.: Blowup in diffusion equations: a survey. J. Comput. Appl. Math. 97, 3–32 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bebernes, J., Bressan, A.: Thermal behavior for a confined reactive gas. J. Differ. Equ. 44, 118–133 (1982)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Bebernes, J., Eberly, D.: Mathematical Problems from Combustion Theory. Springer, New York (1989)zbMATHGoogle Scholar
  8. 8.
    Bebernes, J., Kassoy, D.R.: A mathematical analysis of blow-up for thermal reactions – the spatially nonhomogeneous case. SIAM J. Appl. Math. 40, 476–484 (1981)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bélair, J., Mackey, M.C.: Consumer memory and price fluctuations in commodity markets: an integrodifferentiation model. J. Dynam. Differ. Equ. 1, 299–325 (1989)Google Scholar
  10. 10.
    Bellout, H.: Blow-up of solutions of parabolic equations with nonlinear memory. J. Differ. Equ. 70, 42–68 (1987)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brunner, H.: Nonpolynomial spline collocation for Volterra equations with weakly singular kernels. SIAM J. Numer. Anal. 20, 1106–1119 (1983)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Brunner, H.: Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221–239 (1986)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Brunner, H.: The approximate solution of initial-value problems for general Volterra integro-differential equations. Computing 40, 125–137 (1988)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Brunner, H.: Collocation methods for nonlinear Volterra integro-differential equations with infinite delay. Math. Comput. 53, 571–587 (1989)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Brunner, H.: The numerical solution of neutral Volterra integro-differential equations with delay arguments. Ann. Numer. Math. 1, 309–322 (1994)Google Scholar
  16. 16.
    Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)Google Scholar
  17. 17.
    Brunner, H.: The numerical analysis of functional integral and integro-differential equations of Volterra type. Acta Numer. 13, 55–145 (2004)Google Scholar
  18. 18.
    Brunner, H.: The numerical solution of weakly singular Volterra functional integro-differential equations with variable delays. Commun. Pure Appl. Anal. 5, 261–276 (2006)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Brunner, H., Ma, J.T.: On the regularity of solutions to Volterra functional integro-differential equations with weakly singular kernels. J. Integr. Equ. Appl. 18, 143–167 (2006)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Brunner, H., Schötzau, D.: hp-discontinuous Galerkin time-stepping for Volterra integro-differential equations. SIAM J. Numer. Anal. 44, 224–245 (2006)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Brunner, H., van der Houwen, P.J.: The Numerical Solution of Volterra Equations. CWI Monographs, vol. 3. North-Holland, Amsterdam (1986)Google Scholar
  22. 22.
    Brunner, H., Vermiglio, R.: Stability of solutions of delay functional integro-differential equations and their discretizations. Computing 71, 229–245 (2003)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Brunner, H., Yang, Z.W.: Blow-up behavior of Hammerstein-type Volterra integral equations. J. Integr. Equ. Appl. 24, 487–512 (2012)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Brunner, H., Kauthen, J.-P., Ostermann, A.: Runge-Kutta time discretization of parabolic integro-differential equations. J. Integr. Equ. Appl. 7, 1–16 (1995)Google Scholar
  25. 25.
    Brunner, H., Pedas, A., Vainikko, G.: Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 39, 957–982 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Brunner, H., van der Houwen, P.J., Sommeijer, B.P.: Splitting methods for partial Volterra integro-differential equations. In: Lu, Y., Sun, W., Tang, T. (eds.) Advances in Scientific Computing and Applications (Hong Kong 2003), pp. 68–81. Science Press, Beijing/New York (2004)Google Scholar
  27. 27.
    Brunner, H., Ling, L., Yamamoto, M.: Numerical simulation of 2D fractional subdiffusion problems. J. Comput. Phys. 229, 6613–6622 (2010)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Brunner, H., Han, H.D., Yin, D.S: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded domain. J. Comput. Phys. 276, 541–562 (2014)Google Scholar
  29. 29.
    Brunner, H., Han, H.D., Yin, D.S.: The maximum principle for time-fractional diffusion equations and its applications. Numer. Funct. Anal. Optim. 36, 1307–1321 (2015)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Brunner, H., Tang, T., Zhang, J.W.: Numerical blow-up of nonlinear parabolic integro-differential equations on unbounded domain. J. Sci. Comput. 68, 1281–1298 (2016)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Bulatov, M.V., Lima, P., Weinmüller, E.B.: Existence and uniqueness of solutions to weakly singular integral-algebraic and integro-differential equations. Cent. Eur. J. Math. 12, 308–321 (2014)Google Scholar
  32. 32.
    Burns, J.A., Cliffs, E.M., Herdman, T.L.: A state-space model for an aeroelastic system. In: 22nd IEEE Conference on Decision and Control, vol. 3, pp. 1074–1077 (1983)Google Scholar
  33. 33.
    Cao, Y.Z., Herdman, T.L., Xu, Y.S.: A hybrid collocation method for Volterra integral equations with weakly singular kernels. SIAM J. Numer. Anal. 41, 364–381 (2003)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Chadam, J.M., Yin, H.M.: A diffusion equation with localized chemical reactions. Proc. Edinb. Math Soc. (2) 37, 101–118 (1994)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Chadam, J.M., Peirce, A., Yin, H.M.: The blowup property of solutions to some diffusion equations with localized nonlinear reactions. J. Math. Anal. Appl. 169, 313–328 (1992)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Clément, P., Londen, S.-O.: Regularity aspects of fractional evolution equations. Rend. Ist. Mat. Univ. Trieste 31, 19–30 (2000)Google Scholar
  37. 37.
    Cuesta, E., Lubich, Ch., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75, 673–696 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Cushing, J.M.: Integrodifferential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics, vol. 20. Springer, Berlin/Heidelberg (1977)zbMATHGoogle Scholar
  39. 39.
    Doležal, V.: Dynamics of Linear Systems. Publishing House of the Czechoslovak Academy of Sciences, Prague (1964)Google Scholar
  40. 40.
    Fujita, Y.: Integrodifferential equation which interpolates the heat equation and the wave equation (I). Osaka J. Math. 27, 309–321 (1990); (II) 27, 797–804 (1990)Google Scholar
  41. 41.
    Ganesh, M., Sloan, I.H.: Optimal order spline methods for nonlinear differential and integro-differential equations. Appl. Numer. Math. 29, 445–478 (1999)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ganesh, M., Spence, A.: Orthogonal collocation for nonlinear integro-differential equations. IMA J. Numer. Anal. 18, 191–206 (1998)Google Scholar
  43. 43.
    Han, H.D., Wu, X.N.: Artificial Boundary Method. Springer, Heidelberg/Tsinghua University Press, Beijing (2013)Google Scholar
  44. 44.
    Han, H.D., Zhu, L., Brunner, H., Ma, J.T.: Artificial boundary conditions for parabolic Volterra integro-differential equations on unbounded two-dimensional domains. J. Comput. Appl. Math. 197, 406–420 (2006)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Hangelbroek, R.J., Kaper, H.G., Leaf, G.K.: Collocation methods for integro-differential equations. SIAM J. Numer. Anal. 14, 377–390 (1977)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ito, K., Turi, J.: Numerical methods for a class of singular integro-differential equations based on semigroup approximation. SIAM J. Numer. Anal. 28, 1698–1722 (1991)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Janno, J., von Wolfersdorf, L.: Integro-differential equations of first order with autoconvolution integral. J. Integr. Equ. Appl. 21, 39–75 (2009)Google Scholar
  48. 48.
    Jordan, G.S.: A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type. Proc. R. Soc. Edinb. Sect. A 80, 235–277 (1978)zbMATHGoogle Scholar
  49. 49.
    Kauthen, J.-P.: Implicit Runge-Kutta methods for singularly perturbed integro-differential systems. Appl. Numer. Math. 18, 201–210 (1995)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Springer, Berlin/Heidelberg (2013)zbMATHGoogle Scholar
  51. 51.
    Lasaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic, New York (1974)zbMATHGoogle Scholar
  52. 52.
    Li, S.F.: High order contractive Runge-Kutta methods for Volterra functional differential equations. SIAM J. Numer. Anal. 47, 4290–4325 (2010)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Li, S.F., Li, Y.F.: B-convergence theory of Runge-Kutta methods for stiff Volterra functional differential equations with infinite interval of integration. SIAM J. Numer. Anal. 53, 2570–2583 (2015)MathSciNetzbMATHGoogle Scholar
  54. 54.
    Liang, H., Brunner, H.: Integral-algebraic equations: theory of collocation methods I. SIAM J. Numer. Anal. 51, 2238–2259 (2013)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Liang, H., Brunner, H.: Integral-algebraic equations: theory of collocation methods II. SIAM J. Numer. Anal. 54, 2640–2663 (2016)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Liang, H., Brunner, H.: Collocation methods for integro-differential-algebraic equations with index 1. IMA J. Numer. Anal. (submitted)Google Scholar
  57. 57.
    Ling, L., Yamamoto, M.: Numerical simulations for space-time fractional diffusion equations. Int. J. Comput. Methods 10, 13 pp. (2013)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Lodge, A.S., McLeod, J.B., Nohel, J.A.: A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology. Proc. R. Soc. Edinb. Sect. A 80, 99–137 (1978)zbMATHGoogle Scholar
  59. 59.
    López-Fernández, M., Lubich, Ch., Schädle, A.: Adaptive, fast, and oblivious convolution in evolution equations with memory. SIAM J. Sci. Comput. 30, 1015–1037 (2008)MathSciNetzbMATHGoogle Scholar
  60. 60.
    Lubich, Ch.: Runge-Kutta theory for Volterra integrodifferential equations. Numer. Math. 40, 119–135 (1982)MathSciNetzbMATHGoogle Scholar
  61. 61.
    Ma, J.T.: Blow-up solutions of nonlinear Volterra integro-differential equations. Math. Comput. Model. 54, 2551–2559 (2011)MathSciNetzbMATHGoogle Scholar
  62. 62.
    Ma, J.T., Brunner, H.: A posteriori error estimates of discontinuous Galerkin methods for non-standard Volterra integro-differential equations. IMA J. Numer. Anal. 26, 78–95 (2006)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Ma, X.H., Huang, C.M.: Numerical solution of fractional integro-differential equations by a hybrid collocation method. Appl. Math. Comput. 219, 6750–6760 (2013)MathSciNetzbMATHGoogle Scholar
  64. 64.
    Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)Google Scholar
  65. 65.
    Markowich, P., Renardy, M.: A nonlinear Volterra integro-differential equation describing the stretching of polymer liquids. SIAM J. Math. Anal. 14, 66–97 (1983)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Markowich, P., Renardy, M.: The numerical solution of a class of quasilinear parabolic Volterra equations arising in polymer rheology. SIAM J. Numer. Anal. 20, 890–908 (1983)MathSciNetzbMATHGoogle Scholar
  67. 67.
    Matache, A.-M., Schwab, C., Wihler, T.P.: Fast numerical solution of parabolic integro-differential equations with applications in finance. SIAM J. Sci. Comput. 27, 369–393 (2005)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Matache, A.-M., Schwab, C., Wihler, T.P.: Linear complexity of parabolic integro-differential equations. Numer. Math. 104, 69–102 (2006)MathSciNetzbMATHGoogle Scholar
  69. 69.
    McLean, W.: Regularity of solutions to a time-fractional diffusion equation. ANZIAM J. 52, 123–138 (2010)MathSciNetzbMATHGoogle Scholar
  70. 70.
    McLean, W., Mustapha, K.: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data. J. Comput. Phys. 293, 201–217 (2015)MathSciNetzbMATHGoogle Scholar
  71. 71.
    McLean, W., Thomée, V.: Time discretization of an evolution equation via Laplace transforms. IMA J. Numer. Anal. 24, 439–463 (2004)MathSciNetzbMATHGoogle Scholar
  72. 72.
    Mustapha, K.: A superconvergent discontinuous Galerkin method for Volterra integro-differential equations. Math. Comput. 82, 1987–2005 (2013)Google Scholar
  73. 73.
    Mustapha, K., McLean, W.: Discontinuous Galerkin method for an evolution equation with a memory term of positive type. Math. Comput. 78, 1975–1995 (2009)MathSciNetzbMATHGoogle Scholar
  74. 74.
    Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional differential equation. IMA J. Numer. Anal. 32, 906–925 (2012)Google Scholar
  75. 75.
    Mustapha, K., Schötzau, D.: Well-posedness of hp-version discontinuous Galerkin methods for fractional diffusion wave equations. IMA J. Numer. Anal. 34, 1426–1446 (2014)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Mustapha, K., Brunner, H., Mustapha, H., Schötzau, D.: An hp-version discontinuous Galerkin method for integro-differential equations of parabolic type. SIAM J. Numer. Anal. 49, 1369–1396 (2011)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Mustapha, K., Abdallah, B., Furati, K.M.: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations. SIAM J. Numer. Anal. 52, 2512–2529 (2014)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Nassirharand, A.: A new technique for solving sets of coupled nonlinear algebraic and integro-differential equations. Int. J. Contemp. Math. Sci. 3, 1611–1617 (2008)Google Scholar
  79. 79.
    Parts, I., Pedas, A., Tamme, E.: Piecewise polynomial collocation for Fredholm integro-differential equations with weakly singular kernels. SIAM J. Numer. Anal. 43, 1897–1911 (2005)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Pedas, A., Tamme, E.: Spline collocation method for integro-differential equations with weakly singular kernels. J. Comput. Appl. Math. 197, 253–269 (2006)MathSciNetzbMATHGoogle Scholar
  81. 81.
    Pedas, A., Tamme, E.: A discrete collocation method for Fredholm integro-differential equations with weakly singular kernels. Appl. Numer. Math. 61, 738–751 (2011)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Prüss, J.: Evolutionary Integral Equations and Applications. Birkhäuser, Basel (1993)/Reprint (2012)zbMATHGoogle Scholar
  83. 83.
    Quittner, P., Souplet, P.: Superlinear Parabolic Problems. Birkhäuser, Basel (2007)Google Scholar
  84. 84.
    Rouzaud, H.: Long-time dynamics of an integro-differential equation describing the evolution of a spherical flame. Rev. Mat. Complut. 16, 207–232 (2003)Google Scholar
  85. 85.
    Schädle, A., López-Fernández, M., Lubich, Ch.: Fast and oblivious convolution quadrature. SIAM J. Sci. Comput. 28, 421–438 (2006)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Shakourifar, M., Enright, W.H.: Reliable approximate solution of systems of Volterra integro-differential equations with time-dependent delays. SIAM J. Sci. Comput. 33, 1134–1158 (2011)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Shakourifar, M., Enright, W.H.: Superconvergent interpolants for collocation methods applied to Volterra integro-differential equations with delay. BIT Numer. Math. 52, 725–740 (2012)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Sloan, I.H., Thomée, V.: Time discretization of an integro-differential equation of parabolic type. SIAM J. Numer. Anal. 23, 1052–1061 (1986)MathSciNetzbMATHGoogle Scholar
  89. 89.
    Souplet, P.: Blow-up in nonlocal reaction-diffusion equations. SIAM J. Math. Anal. 29, 1301–1334 (1998)MathSciNetzbMATHGoogle Scholar
  90. 90.
    Souplet, P.: Monotonicity of solutions and blow-up for semilinear parabolic equations with nonlinear memory. Z. Angew. Math. Phys. 55, 28–31 (2004)Google Scholar
  91. 91.
    Tang, T.: Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer. Math. 61, 373–382 (1992)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Volk, W.: The numerical solution of linear integro-differential equations by projection methods. J. Integr. Equ. 9, 171–190 (1985)Google Scholar
  93. 93.
    Volk, W.: The iterated Galerkin method for linear integro-differential equations. J. Comput. Appl. Math. 21, 63–74 (1988)MathSciNetzbMATHGoogle Scholar
  94. 94.
    Volterra, V.: Sulle equazioni integro-differenziali. Rend. Accad. Lincei Ser. 5 XVIII, 167–174 (1909)Google Scholar
  95. 95.
    Volterra, V.: Sur les équations intégro-différentielles et leurs applications. Acta Math. 35, 295–356 (1912)MathSciNetzbMATHGoogle Scholar
  96. 96.
    Volterra, V.: Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. R. Com. Talass. Ital. CXXXI, 142 pp. (1927)Google Scholar
  97. 97.
    Volterra, V.: Theory of Functionals and of Integral and Integro-Differential Equations (1927/1930). Dover, New York (1959)Google Scholar
  98. 98.
    Volterra, V.: Leçons sur la théorie mathématique de la lutte pour la vie [Lessons on the Mathematical Theory of the Struggle for Survival] (reprint of the original 1931 Gauthier-Villars edition). Éditions Jacques Gabay, Sceaux (1990)Google Scholar
  99. 99.
    von Wolfersdorf, L., Janno, J.: Integro-differential equations of first order with autoconvolution integral II. J. Integr. Equ. Appl. 23, 331–349 (2011)MathSciNetzbMATHGoogle Scholar
  100. 100.
    Yi, L.J., Guo, B.Q.: An h − p version of the continuous Petrov-Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth solutions. SIAM J. Numer. Anal. 53, 2677–2704 (2015)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Yuan, W., Tang, T.: The numerical analysis of implicit Runge-Kutta methods for a certain integro-differential equation. Math. Comput. 54, 155–168 (1990)MathSciNetzbMATHGoogle Scholar
  102. 102.
    Zhang, R., Liang, H., Brunner, H.: Analysis of collocation methods for auto-convolution Volterra integral equations. SIAM J. Numer. Anal. 54, 899–920 (2016)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsHong Kong Baptist UniversityHong Kong SARChina
  2. 2.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John’sCanada

Personalised recommendations