Advertisement

On Quasi-Energy-Spectra, Pair Correlations of Sequences and Additive Combinatorics

  • Ida Aichinger
  • Christoph Aistleitner
  • Gerhard LarcherEmail author
Chapter

Abstract

The investigation of the pair correlation statistics of sequences was initially motivated by questions concerning quasi-energy-spectra of quantum systems. However, the subject has been developed far beyond its roots in mathematical physics, and many challenging number-theoretic questions on the distribution of the pair correlations of certain sequences are still open. We give a short introduction into the subject, recall some known results and open problems, and in particular explain the recently established connection between the distribution of pair correlations of sequences on the torus and certain concepts from additive combinatorics. Furthermore, we slightly improve a result recently given by Jean Bourgain in Aistleitner et al. (Isr. J. Math., to appear. Available at https://arxiv.org/abs/1606.03591).

Notes

Acknowledgements

The first author is supported by CERN, European Organization for Nuclear Research, Geneva, as part of the Austrian Doctoral Student Programme.

The second author is supported by the Austrian Science Fund (FWF), START-project Y-901.

The third author is supported by the Austrian Science Fund (FWF): Project F5507-N26, which is part of the Special Research Program “Quasi-Monte Carlo Methods: Theory and Applications”.

References

  1. 1.
    Aistleitner, C., Larcher, G., Lewko, M.: Additive energy and the Hausdorff dimension of the exceptional set in metric pair correlation problems. With an appendix by Jean Bourgain. Isr. J. Math. (to appear). Available at https://arxiv.org/abs/1606.03591
  2. 2.
    Balog, A., Szemerédi, E.: A statistical theorem of set addition. Combinatorica 14(3), 263–268 (1994).MathSciNetCrossRefGoogle Scholar
  3. 3.
    Berkes, I., Philipp, W., Tichy, R.: Pair correlations and U-statistics for independent and weakly dependent random variables. Ill. J. Math. 45(2), 559–580 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Berry, M., Tabor, M.: Level clustering in the regular spectrum. R. Soc. Lond. Proc. Ser. A 356, 375–394 (1977)CrossRefGoogle Scholar
  5. 5.
    Bleher, P.M.: The energy level spacing for two harmonic oscillators with golden mean ratio of frequencies. J. Statist. Phys. 61(3–4), 869–876 (1990)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boca, F.P., Zaharescu, A.: Pair correlation of values of rational functions (mod p). Duke Math. J. 105(2), 267–307 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bogomolny, E.: Quantum and arithmetic chaos. In: Proceedings of the Les Houches Winter School “Frontiers in Number Theory, Physics and Geometry” (2003)Google Scholar
  8. 8.
    Casati, G., Guarneri, I., Izraı̆ lev, F.M.: Statistical properties of the quasi-energy spectrum of a simple integrable system. Phys. Lett. A 124(4–5), 263–266 (1987)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cassels, J.W.S.: Some metrical theorems in Diophantine approximation. I. Proc. Cambridge Philos. Soc. 46, 209–218 (1950)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chaubey, S., Lanius, M., Zaharescu, A.: Pair correlation of fractional parts derived from rational valued sequences. J. Number Theory 151, 147–158 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Freı̆ man, G.A.: Foundations of a Structural Theory of Set Addition. Translations of Mathematical Monographs, vol. 37. American Mathematical Society, Providence, RI (1973). Translated from the RussianGoogle Scholar
  12. 12.
    Gowers, W.T.: A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Heath-Brown, D.R.: Pair correlation for fractional parts of αn 2. Math. Proc. Cambridge Philos. Soc. 148(3), 385–407 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lev, V.: The (Gowers–)Balog–Szemerédi theorem: an exposition http://people.math.gatech.edu/~ecroot/8803/baloszem.pdf
  15. 15.
    Marklof, J.: The Berry-Tabor conjecture. In: European Congress of Mathematics, Vol. II, Barcelona, 2000. Progress in Mathematics, vol. 202, pp. 421–427. Birkhäuser, Basel (2001)CrossRefGoogle Scholar
  16. 16.
    Marklof, J.: Energy level statistics, lattice point problems, and almost modular functions. In: Frontiers in Number Theory, Physics, and Geometry. I, pp. 163–181. Springer, Berlin (2006)Google Scholar
  17. 17.
    Marklof, J., Strömbergsson, A.: Equidistribution of Kronecker sequences along closed horocycles. Geom. Funct. Anal. 13(6), 1239–1280 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Montgomery, H.L.: The pair correlation of zeros of the zeta function. In: Analytic Number Theory (Proceedings of Symposia in Pure Mathematics, Vol. XXIV, St. Louis University, St. Louis, MO, 1972), pp. 181–193. American Mathematical Society, Providence, RI (1973)Google Scholar
  19. 19.
    Paul, B.: Tea time at Princeton. Harv. Coll. Math. Rev. 4, 41–53 (2012)Google Scholar
  20. 20.
    Rudnick, Z., Sarnak, P.: The pair correlation function of fractional parts of polynomials. Comm. Math. Phys. 194(1), 61–70 (1998)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rudnick, Z., Zaharescu, A.: A metric result on the pair correlation of fractional parts of sequences. Acta Arith. 89(3), 283–293 (1999)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rudnick, Z., Sarnak, P., Zaharescu, A.: The distribution of spacings between the fractional parts of n 2 α. Invent. Math. 145(1), 37–57 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Sarnak, P.: Values at integers of binary quadratic forms. In: Harmonic Analysis and Number Theory (Montreal, PQ, 1996). CMS Conference Proceedings, vol. 21, pp. 181–203. American Mathematical Society, Providence, RI (1997)Google Scholar
  24. 24.
    Shparlinski, I.E.: On small solutions to quadratic congruences. J. Number Theory 131(6), 1105–1111 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Shparlinski, I.E.: On the restricted divisor function in arithmetic progressions. Rev. Mat. Iberoam. 28(1), 231–238 (2012)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Sloan, I.: The method of polarized orbitals for the elastic scattering of slow electrons by ionized helium and atomic hydrogen. Roy. Soc. Lond. Proc. Ser. A 281, 151–163 (1964)CrossRefGoogle Scholar
  27. 27.
    Sós, V.T.: On the distribution mod 1 of the sequence . Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 1, 127–134 (1958)Google Scholar
  28. 28.
    Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Mathematics, vol. 105. Cambridge University Press, Cambridge (2006)Google Scholar
  29. 29.
    Truelsen, J.L.: Divisor problems and the pair correlation for the fractional parts of n 2 α. Int. Math. Res. Not. 2010(16), 3144–3183 (2010)Google Scholar
  30. 30.
    Vanderkam, J.M.: Values at integers of homogeneous polynomials. Duke Math. J. 97(2), 379–412 (1999)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Weingartner, A.: The distribution functions of σ(n)/n and n/ϕ(n). Proc. Am. Math. Soc. 135(9), 2677–2681 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Ida Aichinger
    • 1
  • Christoph Aistleitner
    • 2
  • Gerhard Larcher
    • 3
    Email author
  1. 1.CERNEuropean Organization for Nuclear ResearchMeyrinSwitzerland
  2. 2.TU GrazInstitute for Analysis and Number TheoryGrazAustria
  3. 3.Johannes Kepler University LinzInstitute for Financial Mathematics and Applied Number TheoryLinzAustria

Personalised recommendations