Advertisement

Implementing Fast Carryless Multiplication

  • Joris van der Hoeven
  • Robin Larrieu
  • Grégoire Lecerf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10693)

Abstract

The efficient multiplication of polynomials over the finite field \(\mathbb {F}_2\) is a fundamental problem in computer science with several applications to geometric error correcting codes and algebraic crypto-systems. In this paper we report on a new algorithm that leads to a practical speed-up of about two over previously available implementations. Our current implementation assumes a modern AVX2 and CLMUL enabled processor.

References

  1. 1.
    Brent, R.P., Gaudry, P., Thomé, E., Zimmermann, P.: Faster multiplication in GF(2)[x]. In: van der Poorten, A.J., Stein, A. (eds.) ANTS 2008. LNCS, vol. 5011, pp. 153–166. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-79456-1_10 CrossRefGoogle Scholar
  2. 2.
    Chen, M.-S., Cheng, C.-M., Kuo, P.-C., Li, W.-D., Yang, B.-Y.: Faster multiplication for long binary polynomials (2017). https://arxiv.org/abs/1708.09746
  3. 3.
    Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Gao, S., Mateer, T.: Additive fast Fourier transforms over finite fields. IEEE Trans. Inform. Theory 56(12), 6265–6272 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, New York (2013)CrossRefMATHGoogle Scholar
  6. 6.
    GCC, the GNU Compiler Collection (1987). http://gcc.gnu.org
  7. 7.
    Harvey, D., van der Hoeven, J., Lecerf, G.: Fast polynomial multiplication over \(\mathbb{F}_{2^{60}}\). In: Rosenkranz, M. (ed.) Proceedings of the ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2016, pp. 255–262. ACM (2016)Google Scholar
  8. 8.
    Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields. J. ACM 63(6) (2017). Article 52Google Scholar
  9. 9.
    van der Hoeven, J.: The truncated Fourier transform and applications. In: Schicho, J. (ed.) Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC 2004, pp. 290–296. ACM (2004)Google Scholar
  10. 10.
    van der Hoeven, J.: Newton’s method and FFT trading. J. Symbolic Comput. 45(8), 857–878 (2010)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    van der Hoeven, J., Larrieu, R.: The Frobenius FFT. In: Burr, M. (ed.) Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2017, pp. 437–444. ACM (2017)Google Scholar
  12. 12.
    van der Hoeven, J., Lecerf, G.: Interfacing Mathemagix with C++. In: Monagan, M., Cooperman, G., Giesbrecht, M. (eds.) Proceedings of the 2013 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2013, pp. 363–370. ACM (2013)Google Scholar
  13. 13.
    van der Hoeven, J., Lecerf, G.: Mathemagix User Guide (2013). https://hal.archives-ouvertes.fr/hal-00785549
  14. 14.
    Larrieu, R.: The truncated Fourier transform for mixed radices. In: Burr, M. (ed.) Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, ISSAC 2017, pp. 261–268. ACM (2017)Google Scholar
  15. 15.
    Lin, S.-J., Chung, W.-H., Yunghsiang Han, S.: Novel polynomial basis and its application to Reed-Solomon erasure codes. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 316–325. IEEE (2014)Google Scholar
  16. 16.
    Schönhage, A.: Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2. Acta Infor. 7, 395–398 (1977)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Warren, H.S.: Hacker’s Delight, 2nd edn. Addison-Wesley, Boston (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Joris van der Hoeven
    • 1
  • Robin Larrieu
    • 1
  • Grégoire Lecerf
    • 1
  1. 1.Laboratoire d’informatique de l’École polytechnique LIX, UMR 7161 CNRSPalaiseauFrance

Personalised recommendations