Advertisement

Senska – Towards an Enterprise Streaming Benchmark

  • Guenter Hesse
  • Benjamin Reissaus
  • Christoph Matthies
  • Martin Lorenz
  • Milena Kraus
  • Matthias Uflacker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10661)

Abstract

In the light of growing data volumes and continuing digitization in fields such as Industry 4.0 or Internet of Things, data stream processing have gained popularity and importance. Especially enterprises can benefit from this development by augmenting their vital, core business data with up-to-date streaming information. Enriching this transactional data with detailed information from high-frequency data streams allows answering new analytical questions as well as improving current analyses, e.g., regarding predictive maintenance. Comparing such data stream processing architectures for use in an enterprise context, i.e., when combining streaming and business data, is currently a challenging task as there is no suitable benchmark.

In this paper, we give an overview about performance benchmarks in the area of data stream processing. We highlight shortcomings of existing benchmarks and present the need for a new benchmark with a focus on an enterprise context. Furthermore, the ideas behind Senska, a new enterprise streaming benchmark that shall fill this gap, and its architecture are introduced.

Keywords

Benchmarking Benchmark development Data stream processing Stream processing Internet of Things 

References

  1. 1.
    Apache Kafka - clients. https://cwiki.apache.org/confluence/display/KAFKA/Clients. Accessed 24 Apr 2017
  2. 2.
    Documentation - Kafka 0.10.2 documentation. https://kafka.apache.org/documentation/. Accessed 24 Apr 2017
  3. 3.
    Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. VLDB J. 12(2), 120–139 (2003). http://dx.doi.org/10.1007/s00778-003-0095-z CrossRefGoogle Scholar
  4. 4.
    Abdessemed, M.A.: Real-time data integration with apache flink & kafka @bouygues telecom (2015). http://www.slideshare.net/FlinkForward/mohamed-amine-abdessemed-realtime-data-integration-with-apache-flink-kafka. Accessed 06 Apr 2017
  5. 5.
    Arasu, A., Babcock, B., Babu, S., Datar, M., Ito, K., Nishizawa, I., Rosenstein, J., Widom, J.: Stream: The stanford stream data manager (demonstration description). In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD 2003, pp. 665–665. ACM, New York (2003). http://doi.acm.org/10.1145/872757.872854
  6. 6.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. VLDB J. 15(2), 121–142 (2006). http://dx.doi.org/10.1007/s00778-004-0147-z CrossRefGoogle Scholar
  7. 7.
    Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A.S., Ryvkina, E., Stonebraker, M., Tibbetts, R.: Linear road: a stream data management benchmark. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, VLDB 2004, VLDB Endowment, vol. 30, pp. 480–491 (2004). http://dl.acm.org/citation.cfm?id=1316689.1316732
  8. 8.
    Dunning, T., Friedman, E.: Streaming Architecture: New Designs Using Apache Kafka and MapR Streams. O’Reilly Media, Sebastopol (2016)Google Scholar
  9. 9.
    Folkerts, E., Alexandrov, A., Sachs, K., Iosup, A., Markl, V., Tosun, C.: Benchmarking in the cloud: what it should, can, and cannot be. In: Nambiar, R., Poess, M. (eds.) TPCTC 2012. LNCS, vol. 7755, pp. 173–188. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36727-4_12 CrossRefGoogle Scholar
  10. 10.
    Gray, J.: The Benchmark Handbook - For Database and Transaction Processing Systems. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann, Massachusetts (1993)zbMATHGoogle Scholar
  11. 11.
    Hesse, G., Lorenz, M.: Conceptual survey on data stream processing systems. In: Proceedings of the 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), ICPADS 2015, pp. 797–802. IEEE Computer Society, Washington, DC (2015). http://dx.doi.org/10.1109/ICPADS.2015.106
  12. 12.
    Hesse, G., Matthies, C., Reissaus, B., Uflacker, M.: A new application benchmark for data stream processing architectures in an enterprise context: doctoral symposium. In: Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems, DEBS 2017, pp. 359–362. ACM, New York (2017). http://doi.acm.org/10.1145/3093742.3093902
  13. 13.
    Huber, M.F., Voigt, M., Ngomo, A.N.: Big Data architecture for the semantic analysis of complex events in manufacturing. In: Informatik 2016, 46. Jahrestagung der Gesellschaft für Informatik, 26–30 September 2016, Klagenfurt, Österreich, pp. 353–360 (2016). http://subs.emis.de/LNI/Proceedings/Proceedings259/article173.html
  14. 14.
    Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for log processing. In: SIGMOD Workshop on Networking Meets Databases (2011)Google Scholar
  15. 15.
    Kulkarni, S., Bhagat, N., Fu, M., Kedigehalli, V., Kellogg, C., Mittal, S., Patel, J.M., Ramasamy, K., Taneja, S.: Twitter heron: stream processing at scale. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD 2015, pp. 239–250. ACM, New York (2015). http://doi.acm.org/10.1145/2723372.2742788
  16. 16.
    Lu, R., Wu, G., Xie, B., Hu, J.: Stream bench: towards benchmarking modern distributed stream computing frameworks. In: Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp. 69–78. UCC 2014. IEEE Computer Society, Washington, DC (2014). http://dx.doi.org/10.1109/UCC.2014.15
  17. 17.
    Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., Aharon, D.: The internet of things: mapping the value beyond the hype, June 2015. http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/The-Internet-of-things-Mapping-the-value-beyond-the-hype.ashx. Accessed 01 Mar 2017
  18. 18.
    Menasce, D.A.: Tpc-w: a benchmark for e-commerce. IEEE Internet Comput. 6(3), 83–87 (2002)CrossRefGoogle Scholar
  19. 19.
    Mendes, M.R.N., Bizarro, P., Marques, P.: A performance study of event processing systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 221–236. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10424-4_16 Google Scholar
  20. 20.
    Shukla, A., Chaturvedi, S., Simmhan, Y.: Riotbench: A real-time iot benchmark for distributed stream processing platforms. CoRR abs/1701.08530 (2017). http://arxiv.org/abs/1701.08530
  21. 21.
    Southekal, P.H.: Data for Business Performance: The Goal-Question-Metric (GQM) Model to Transform Business Data into an Enterprise Asset (2017)Google Scholar
  22. 22.
    Vieru, M., López, J.: Flink in zalando’s world of microservices (2016). http://www.slideshare.net/ZalandoTech/flink-in-zalandos-world-of-microservices-62376341. Accessed 06 Apr 2017
  23. 23.
    Weiner, S., Line, D.: Manufacturing and the data conundrum - too much? too little? or just right? https://www.eiuperspectives.economist.com/sites/default/files/Manufacturing_Data_Conundrum_Jul14.pdf (2014). Accessed 01 Mar 2017

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Guenter Hesse
    • 1
  • Benjamin Reissaus
    • 1
  • Christoph Matthies
    • 1
  • Martin Lorenz
    • 1
  • Milena Kraus
    • 1
  • Matthias Uflacker
    • 1
  1. 1.Hasso Plattner InstituteUniversity of PotsdamPotsdamGermany

Personalised recommendations