Verifiable Range Query Processing for Cloud Computing

  • Yanling Li
  • Junzuo Lai
  • Chuansheng WangEmail author
  • Jianghe Zhang
  • Jie Xiong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10701)


With the popularity of cloud computing technology, the clients usually store a mass of data in the cloud server. Because of the untrusted cloud servers, the massive data query raises privacy concerns. To prevent sensitive data on the cloud from hostile attacking, and obtain the query result timely, users usually use the searchable encryption technology to store encrypted data on the cloud. In the prior work, there are many privacy-preserving schemes for cloud computing, but the verification of these schemes cannot be ensured. Due to software errors, communication transmission failure or the dishonest features of the public cloud servers, only part of the data set was searched. So the integrity is also an urgent problem to be solved. In this paper, we propose a verifiable range query processing scheme with the ability to verify the correctness of query result. The key idea of this paper is to add additional information to a complete binary tree, which is used to organize indexing elements. The result returned by the cloud server will be accompanied by validation information so that the user can verify whether the result is complete. Finally, we confirm that the storage overhead of the verifiable scheme is \(O(n \log n)\), where n is the total number of data items, and implement our scheme to testify to its practicability.


Cloud computing Range query Verification 


  1. 1.
    Amazon: Amazon Web Services.
  2. 2.
    Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970). CrossRefzbMATHGoogle Scholar
  3. 3.
    Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 639–648 (1996).
  7. 7.
    Chang, Y., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. IACR Cryptology ePrint Archive 2004, 51 (2004).
  8. 8.
    Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina, J.: Controlling data in the cloud: outsourcing computation without outsourcing control. In: Proceedings of the First ACM Cloud Computing Security Workshop, CCSW 2009, Chicago, IL, USA, 13 November 2009, pp. 85–90 (2009).
  9. 9.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  10. 10.
    Google: Google App Engine.
  11. 11.
    Gupta, P., Mckeown, N.: Algorithms for packet classification. IEEE Netw. 15(2), 24–32 (2002)CrossRefGoogle Scholar
  12. 12.
    Hacigümüs, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing SQL over encrypted data in the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, Madison, Wisconsin, 3-6 June 2002, pp. 216–227 (2002).
  13. 13.
    Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional range queries over outsourced data. VLDB J. 21(3), 333–358 (2012). CrossRefGoogle Scholar
  14. 14.
    Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries. In: Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31 - September 3 2004, pp. 720–731 (2004).
  15. 15.
    IBM: IBM Blue Cloud Computing Platform.
  16. 16.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC Press, Boca Raton (2007)zbMATHGoogle Scholar
  17. 17.
    Li, J., Omiecinski, E.R.: Efficiency and security trade-off in supporting range queries on encrypted databases. In: Jajodia, S., Wijesekera, D. (eds.) DBSec 2005. LNCS, vol. 3654, pp. 69–83. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  18. 18.
    Li, R., Liu, A.X., Wang, A.L., Bruhadeshwar, B.: Fast and scalable range query processing with strong privacy protection for cloud computing. IEEE/ACM Trans. Netw. 24(4), 2305–2318 (2016). CrossRefGoogle Scholar
  19. 19.
    Microsoft: Microsoft Azure. Google Scholar
  20. 20.
    Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE Internet Comput. 16(1), 69–73 (2012). CrossRefGoogle Scholar
  21. 21.
    Rivest, R.: The MD5 Message-Digest Algorithm. RFC Editor (1992)Google Scholar
  22. 22.
    Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and Privacy, Berkeley, California, USA, May 14-17, 2000, pp. 44–55 (2000).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yanling Li
    • 1
  • Junzuo Lai
    • 1
    • 2
  • Chuansheng Wang
    • 1
    Email author
  • Jianghe Zhang
    • 1
  • Jie Xiong
    • 1
  1. 1.Department of Computer ScienceJinan UniversityGuangzhouChina
  2. 2.State Key Laboratory of CryptologyBeijingChina

Personalised recommendations