Can Virtual Human Entourage Elements Facilitate Accurate Distance Judgments in VR?

  • Karla Paraiso
  • Victoria InterranteEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10700)


Entourage elements are widely used in architectural renderings to provide a sense of scale and bring the drawings to life. We explore the potential of using a photorealistic, three-dimensional, exact-scale model of a known person as an entourage element to ameliorate the classical problem of distance underestimation in immersive virtual environments, for the purposes of enhancing spatial perception accuracy during architectural design reviews.


Virtual environments Distance perception Virtual human entourage elements 



This work was supported by the National Science Foundation through grants CHS: Small: Transforming the Architectural Design Review Process through Collaborative Embodiment in HMD-based Immersive Virtual Environments (1526693) and REU Site: Computational Methods for Discovery Driven by Big Data (1460620), by the Computing Research Association’s Committee on the Status of Women in Research (CRA-W) through its Distributed Research Experiences for Undergraduates (DREU) program, and by the Linda and Ted Johnson Digital Design Consortium Endowment. A previous iteration of this project was begun by Grace Chen and Bezawit Moges in 2014, and continued by Yucai Chang with assistance from John Chen and Peng Liu.


  1. 1.
    Anderson, A.T.: On the human figure in architectural representation. J. Archit. Edu. 55(4), 238–246 (2002)CrossRefGoogle Scholar
  2. 2.
    Arbitrary Studio. Accessed 2 Oct 2017
  3. 3.
    Creem-Regehr, S.H., Stefanucci, J.K., Thompson, W.B., Nash, N. McCardell, M.: Egocentric distance perception in the Oculus Rift (DK2). In: Proceedings of the ACM Symposium on Applied Perception, pp. 47–50. ACM, New York (2015)Google Scholar
  4. 4.
    Colonesse, F.: Human figure as a cultural mediator in architectural drawings. In: Koç, G., Claes, M.-T., Christiansen, B. (eds.) Cultural Influences on Architecture. IGI Global (2016)Google Scholar
  5. 5.
    Imamoglu, V.: The effect of furniture density on the subjective evaluation of spaciousness and estimation of size of rooms. In: Küller, R. (ed.) Architectural Psychology (Proceedings of the Lund Conference) (1973)Google Scholar
  6. 6.
    Interrante, V., Ries, B., Lindquist, J., Kaeding, M., Anderson, L.: Elucidating factors that can facilitate veridical spatial perception in immersive virtual environments. Presence: Teleoperators Virtual Environ. 17(2), 176–198 (2008)CrossRefGoogle Scholar
  7. 7.
    Jones, J.A., Swan II, J.E., Bolas, M.: Peripheral stimulation and its effect on perceived spatial scale in virtual environments. IEEE Trans. Vis. Comput. Graph. 19(4), 701–710 (2013)CrossRefGoogle Scholar
  8. 8.
    Jun, E., Stefanucci, J.K., Creem-Regehr, S.H., Geuss, M.N., Thompson, W.B.: Big Foot: using the size of a virtual foot to scale gap width. ACM Trans. Appl. Percept. 12(4), 12 (2015). Article 16CrossRefGoogle Scholar
  9. 9.
    Jung, E., Takahashi, K., Watanabe, K., de la Rosa, S., Butz, M.V., Bülthoff, H.H., Meilinger, T.: The influence of human body orientation on distance judgments. Front. Psychol. Percept. Sci. 7, 217 (2016)Google Scholar
  10. 10.
    Kato, K., Higashiyama, A.: Estimation of height for persons in pictures. Percept. Psychophys. 60(8), 1318–1328 (1998)CrossRefGoogle Scholar
  11. 11.
    Kelly, J.W., Hammel, W.W., Siegel, Z.D., Sjolund, L.A.: Recalibration of perceived distance in virtual environments occurs rapidly and transfers asymmetrically across scale. IEEE Trans. Vis. Comput. Graph. 20(4), 588–595 (2014)CrossRefGoogle Scholar
  12. 12.
    Kelly, J.W., Cherep, L.A., Siegel, Z.D.: Perceived space in the HTC Vive. ACM Trans. Appl. Percept. 15(1), 16 (2017). Article 2CrossRefGoogle Scholar
  13. 13.
    Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lillenthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Langbehn, E., Bruder, G., Steinicke, F.: Scale matters! analysis of dominant scale estimation in the presence of conflicting cues in multi-scale collaborative virtual environments. In: Proceedings of the IEEE Symposium on 3D User Interfaces, pp. 211–220 (2016)Google Scholar
  15. 15.
    Leyrer, M., Linkenauger, S.A., Bülthoff, H.H., Mohler, B.J.: Eye height manipulations: a possible solution to reduce underestimation of egocentric distances in head-mounted displays. ACM Trans. Appl. Percept. 12(1), 23 (2015). Article 1CrossRefGoogle Scholar
  16. 16.
    Li, B., Zhang, R., Nordman, A., Kuhl, S.A.: The effects of minification and display field of view on distance judgments in real and HMD-based environments. In: Proceedings of the ACM Symposium on Applied Perception, pp. 55–58. ACM, New York (2015)Google Scholar
  17. 17.
    Linkenauger, S.A., Leyrer, M., Bülthoff, H.H., Mohler, B.J.: Welcome to wonderland: the influence of the size and shape of a virtual hand on the perceived size and shape of virtual objects. PLoS ONE 8(7), e68594 (2013)CrossRefGoogle Scholar
  18. 18.
    McManus, E.A., Bodenheimer, B., Streuber, S., de la Rosa, S., Bülthoff, H.H., Mohler, B.J.: The influence of avatar (self and character) animations on distance estimation, object interaction and locomotion in immersive virtual environments. In: Proceedings of the ACM Symposium on Applied Perception in Graphics and Visualization, pp. 37–44. ACM, New York (2011)Google Scholar
  19. 19.
    Mohler, B.J., Creem-Regehr, S.H., Thompson, W.B., Bülthoff, H.H.: The effect of viewing a self-avatar on distance judgments in an HMD-based virtual environment. Presence: Teleoperators Virtual Environ. 19(3), 230–242 (2010)CrossRefGoogle Scholar
  20. 20.
    Phillips, L., Interrante, V.: A little unreality in a realistic replica environment degrades distance estimation accuracy. In: Proceedings of IEEE Virtual Reality (Posters), pp. 235–236 (2011)Google Scholar
  21. 21.
    Ragan, E.D., Wilkes, C., Cao, Y., Bowman, D.A.: The effects of virtual character animation on spatial judgments. In: Proceedings of IEEE Virtual Reality: Short Papers and Posters, pp. 141–142 (2012)Google Scholar
  22. 22.
    Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in virtual environments - a review. ACM Comput. Surv. 46(2), 40 (2013). Article 23CrossRefGoogle Scholar
  23. 23.
    Richardson, A.R., Waller, D.: Interaction with an immersive virtual environment corrects users’ distance estimates. Hum. Factors: J. Hum. Factors Ergon. Soc. 49(3), 507–517 (2007)CrossRefGoogle Scholar
  24. 24.
    Ries, B., Interrante, V., Kaeding, M., Anderson L.: The effect of self-embodiment on distance perception in immersive virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 167–170. ACM, New York (2008)Google Scholar
  25. 25.
    Ries, B., Kaeding, M., Phillips, L., Interrante, V.: Analyzing the effect of a virtual avatar’s geometric and animation fidelity on ego-centric spatial perception in immersive virtual environments. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 59–66. ACM, New York (2009)Google Scholar
  26. 26.
    Steinicke, F., Bruder, G., Hinrichs, K., Lappe, M., Ries, B., Interrante, V.: Transitional environments enhance distance perception in immersive virtual reality systems. In: Proceedings of the ACM/SIGGRAPH Symposium on Applied Perception in Graphics and Visualization, pp. 19–26. ACM, New York (2009)Google Scholar
  27. 27.
    Usoh, M., Catena, E., Arman, S., Slater, M.: Using presence questionnaires in reality. Presence: Teleoperators Virtual Environ. 9(5), 497–503 (2000)CrossRefGoogle Scholar
  28. 28.
    Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoperators Virtual Environ. 7(3), 225–240 (1998)CrossRefGoogle Scholar
  29. 29.
    Witt, J.K., Stefanucci, J.K., Riener, C.R., Proffitt, D.R.: Seeing beyond the target: environmental context affects distance perception. Perception 36(12), 1752–1768 (2007)CrossRefGoogle Scholar
  30. 30.
    Young, M.K., Gaylor, G.B., Andrus, S.M., Bodenheimer, B.: A comparison of two cost-differentiated virtual reality systems for perception and action tasks. In: Proceedings of the ACM Symposium on Applied Perception, 83–90. ACM, New York (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Arizona State UniversityTempeUSA
  2. 2.University of MinnesotaMinneapolisUSA

Personalised recommendations