2016 MATRIX Annals pp 43-47 | Cite as
The Smooth Hom-Stack of an Orbifold
Chapter
First Online:
Abstract
For a compact manifold M and a differentiable stack Open image in new window
presented by a Lie groupoid X, we show the Hom-stack Open image in new window
is presented by a Fréchet–Lie groupoid Map(M, X) and so is an infinite-dimensional differentiable stack. We further show that if Open image in new window
is an orbifold, presented by a proper étale Lie groupoid, then Map(M, X) is proper étale and so presents an infinite-dimensional orbifold.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
This research was supported under the Australian Research Council’s Discovery Projects funding scheme (project numbers DP120100106 and DP130102578).
References
- 1.Baez, J.C., Hoffnung, A.: Convenient categories of smooth spaces. Trans. Am. Math. Soc. 363(11), 5789–5825 (2011). arXiv:0807.1704 MathSciNetCrossRefGoogle Scholar
- 2.Behrend, K., Xu, P.: Differentiable stacks and gerbes. J. Symplectic Geom. 9(3), 285–341 (2011). arXiv:math/0605694 MathSciNetCrossRefGoogle Scholar
- 3.Borzellino, J.E., Brunsden, V.: The stratified structure of spaces of smooth orbifold mappings. Commun. Contemp. Math. 15(5), 1350018, 37 (2013). arXiv:0810.1070 MathSciNetCrossRefGoogle Scholar
- 4.Chen, W.: On a notion of maps between orbifolds I. Function spaces. Commun. Contemp. Math. 8(5), 569–620 (2006). arXiv:math/0603671 MathSciNetCrossRefGoogle Scholar
- 5.Frerick, L.: Extension operators for spaces of infinite differentiable Whitney jets. J. Reine Angew. Math. 602, 123–154 (2007). https://doi.org/10.1515/CRELLE.2007.005 MathSciNetzbMATHGoogle Scholar
- 6.Noohi, B.: Mapping stacks of topological stacks. J. Reine Angew. Math. 646, 117–133 (2010). arXiv:0809.2373
- 7.Roberts, D.M.: Internal categories, anafunctors and localisation. Theory Appl. Categ. 26(29), 788–829 (2012). arXiv:1101.2363
- 8.Roberts, D.M., Vozzo, R.F.: Smooth loop stacks of differentiable stacks and gerbes (2016). Preprint. arXiv:1602.07973
- 9.Stacey, A.: Yet more smooth mapping spaces and their smoothly local properties (2013). Preprint. arXiv:1301.5493
- 10.Weinmann, T.: Orbifolds in the framework of Lie groupoids. Ph.D. thesis, ETH Zürich (2007). https://doi.org/10.3929/ethz-a-005540169
Copyright information
© Springer International Publishing AG, part of Springer Nature 2018