2016 MATRIX Annals pp 203-227 | Cite as
Application of Semifinite Index Theory to Weak Topological Phases
Abstract
Recent work by Prodan and the second author showed that weak invariants of topological insulators can be described using Kasparov’s KK-theory. In this note, a complementary description using semifinite index theory is given. This provides an alternative proof of the index formulae for weak complex topological phases using the semifinite local index formula. Real invariants and the bulk-boundary correspondence are also briefly considered.
Preview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank our collaborators, Alan Carey, Johannes Kellendonk, Emil Prodan and Adam Rennie, whose work this builds from. We also thank the anonymous referee, whose careful reading and suggestions have improved the manuscript. We are partially supported by the DFG grant SCHU-1358/6 and C. B. is also supported by an Australian Mathematical Society Lift-Off Fellowship and a Japan Society for the Promotion of Science Postdoctoral Fellowship for Overseas Researchers (no. P16728).
References
- 1.Atiyah, M.F.: K-theory and reality. Q. J. Math. 17, 367–386 (1966)MathSciNetCrossRefGoogle Scholar
- 2.Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les C ∗-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296(21), 875–878 (1983)MathSciNetMATHGoogle Scholar
- 3.Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)MathSciNetCrossRefGoogle Scholar
- 4.Benameur, M., Carey, A.L, Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Booß-Bavnbek, B., Klimek, S., Lesch, M., Zhang, W. (eds.) Analysis, Geometry and Topology of Elliptic Operators, pp. 297–352. World Scientific Publishing, Singapore (2006)CrossRefGoogle Scholar
- 5.Blackadar, B.: K-Theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998)Google Scholar
- 6.Bourne, C., Carey, A.L., Rennie, A.: A noncommutative framework for topological insulators. Rev. Math. Phys. 28, 1650004 (2016)MathSciNetCrossRefGoogle Scholar
- 7.Bourne, C., Kellendonk, J., Rennie A.: The K-theoretic bulk-edge correspondence for topological insulators. Ann. Henri Poincaré 18(5), 1833–1866 (2017)MathSciNetCrossRefGoogle Scholar
- 8.Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras I: spectral flow. Adv. Math. 202(2), 451–516 (2006)MathSciNetCrossRefGoogle Scholar
- 9.Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras II: the even case. Adv. Math. 202(2), 517–554 (2006)MathSciNetCrossRefGoogle Scholar
- 10.Carey, A.L., Gayral, V., Rennie, A., Sukochev, F.A.: Index theory for locally compact noncommutative geometries. In: Memoirs of the American Mathematical Society, vol. 231, No. 2. American Mathematical Society, Providence (2014)Google Scholar
- 11.Connes, A.: Non-commutative differential geometry. Inst. Hautes Études Sci. Publ. Math. 62, 41–144 (1985)CrossRefGoogle Scholar
- 12.De Nittis, G., Gomi, K.: Chiral vector bundles: a geometric model for class AIII topological quantum systems. arXiv:1504.04863 (2015)Google Scholar
- 13.Forsyth, F., Rennie, A.: Factorisation of equivariant spectral triples in unbounded KK-theory. arXiv:1505.02863 (2015)Google Scholar
- 14.Großmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016)MathSciNetCrossRefGoogle Scholar
- 15.Kaad, J., Nest, R., Rennie, A.: KK-theory and spectral flow in von Neumann algebras. J. K-theory 10(2), 241–277 (2012)MathSciNetCrossRefGoogle Scholar
- 16.Kasparov, G.G.: The operator K-functor and extensions of C ∗-algebras. Math. USSR Izv. 16, 513–572 (1981)CrossRefGoogle Scholar
- 17.Kasparov, G.G.: Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)MathSciNetCrossRefGoogle Scholar
- 18.Kellendonk, J.: Cyclic cohomology for graded C ∗, r-algebras and its pairings with van Daele K-theory. arXiv:1607.08465 (2016)Google Scholar
- 19.Kellendonk, J.: On the C ∗-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017)MathSciNetCrossRefGoogle Scholar
- 20.Kellendonk, J., Richard, S.: Topological boundary maps in physics. In: Boca, F., Purice, R., Strătilă, Ş. (eds.) Perspectives in Operator Algebras and Mathematical Physics. Theta Series in Advanced Mathematics, vol. 8, pp. 105–121. Theta, Bucharest (2008)Google Scholar
- 21.Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002)MathSciNetCrossRefGoogle Scholar
- 22.Kitaev, A: Periodic table for topological insulators and superconductors. In: Lebedev, V., Feigel’Man, M. (eds.) American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 1134, pp. 22–30 (2009)Google Scholar
- 23.Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017)MathSciNetCrossRefGoogle Scholar
- 24.Laca, M., Neshveyev, S.: KMS states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211(2), 457–482 (2004)MathSciNetCrossRefGoogle Scholar
- 25.Lance, E.C.: Hilbert C ∗-Modules: A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series, vol. 210. Cambridge University Press, Cambridge (1995)Google Scholar
- 26.Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton Mathematical Series, Princeton University Press, Princeton (1989)MATHGoogle Scholar
- 27.Lord, S., Rennie, A., Várilly, J.C.: Riemannian manifolds in noncommutative geometry. J. Geom. Phys. 62(2), 1611–1638 (2012)MathSciNetCrossRefGoogle Scholar
- 28.Packer, J.A., Raeburn, I.: Twisted crossed products of C ∗-algebras. Math. Proc. Camb. Philos. Soc. 106, 293–311 (1989)MathSciNetCrossRefGoogle Scholar
- 29.Plymen, R.J.: Strong Morita equivalence, spinors and symplectic spinors. J. Oper. Theory 16, 305–324 (1986)MathSciNetMATHGoogle Scholar
- 30.Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Springer, Cham (2016)CrossRefGoogle Scholar
- 31.Prodan, E., Schulz-Baldes, H.: Generalized Connes-Chern characters in KK-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)MathSciNetCrossRefGoogle Scholar
- 32.Raeburn, I., Williams, D.P.: Morita Equivalence and Continuous-Trace C∗-Algebras. American Mathematical Society, Providence, RI (1998)CrossRefGoogle Scholar
- 33.Schnyder, A.P., Ryu, S., Furusaki, A., Ludwig, A.W.W.: Classification of topological insulators and superconductors in three spatial dimensions. Phys. Rev. B 78, 195125 (2008)CrossRefGoogle Scholar
- 34.Schröder, H.: K-Theory for Real C ∗-Algebras and Applications. Taylor & Francis, New York (1993)MATHGoogle Scholar
- 35.Thiang, G.C.: Topological phases: isomorphism, homotopy and K-theory. Int. J. Geom. Methods Mod. Phys. 12, 1550098 (2015)MathSciNetCrossRefGoogle Scholar
- 36.Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)MathSciNetCrossRefGoogle Scholar