The Development of Intelligent Patient-Centric Systems for Health Care

  • Arturo CarononganIII
  • Hannah Gorgui-Naguib
  • Raouf N. G. Naguib
Part of the Healthcare Delivery in the Information Age book series (Healthcare Delivery Inform. Age)


The delivery of healthcare is currently undergoing a major shift from a curative and reactive approach to one of proactive and preventative health management. This is further being accompanied by the fact that the digital information explosion, known as big data, has signalled a patient-centric revolution in medicine.

Thus, the development of intelligent patient-centric healthcare systems is becoming a dominant theme in driving new models of care. The ‘intelligent’ attribute of such models is in turn derived from complex theories and implementations of a myriad of AI and data analytic paradigms that present opportunities to discover novel methods of providing accurate patient-centred diagnosis, prognosis, and management. This chapter revisits the role that AI has played in the provision of more personalised solutions and treatments, namely, through the development and applications of various artificial neural networks and hidden Markov models in a wide range of clinical and healthcare service arenas.


Artificial intelligence Big data Medicine Clinical applications Artificial neural networks Hidden Markov models 


  1. Aizenberg, I., Aizenberg, N., Hiltner, J., Moraga, C., & Zu Bexten, E. M. (2001). Cellular neural networks and computational intelligence in medical image processing. Image and Vision Computing, 19(4), 177–183.CrossRefGoogle Scholar
  2. Baker, J. A., Kornguth, P. J., Lo, J. Y., Williford, M. E., & Floyd, C. E., Jr. (1995). Breast cancer: Prediction with artificial neural network based on BI-RADS standardized lexicon. Radiology, 196(3), 817–822.CrossRefPubMedGoogle Scholar
  3. Baxt, W. G. (1995). Application of artificial neural networks to clinical medicine. The Lancet, 346(8983), 1135–1138.CrossRefGoogle Scholar
  4. Blanchard, G., & Blankertz, B. (2004). BCI competition 2003 – Data set IIa: Spatial patterns of self-controlled brain rhythm modulations. IEEE Transactions on Biomedical Engineering, 51(6), 1062–1066.CrossRefPubMedGoogle Scholar
  5. Boon, M. E., Kok, L. P., & Under, J. (1993). Neural network processing can provide means to catch errors that slip through human screening of pap smears. Diagnostic Cytopathology, 9(4), 411–416.CrossRefPubMedGoogle Scholar
  6. Burke, H. B., Rosen, D. B., & Goodman, P. H. (1995). Comparing the prediction accuracy of artificial neural networks and other statistical models for breast cancer survival. In G. Tesauro & D. S. Touretzky (Eds.), Advances in neural information processing systems 7 (Vol. 7, pp. 1063–1067). Cambridge: MIT Press.Google Scholar
  7. Camps-Valls, G., Porta-Oltra, B., Soria-Olivas, E., Martín-Guerrero, J. D., Serrano-López, A. J., Pérez- Ruixo, J. J., et al. (2003). Prediction of cyclosporine dosage in patients after kidney transplantation using neural networks. IEEE Transactions on Biomedical Engineering, 50(4), 442–448.CrossRefPubMedGoogle Scholar
  8. Camps-Valls, G., & Martin-Guerrero, J. D. (2006). Neural and kernel methods for therapeutic drug monitoring. In Neural networks in healthcare: Potential and challenges (pp. 238–261). Hershey, PA: IGI Global.CrossRefGoogle Scholar
  9. Choong, P. L. (1994). Breast cancer prognosis using the EMN architecture. Proceeding of the IEEE World Congress on Computational Intelligence, 6, 3516–3520.Google Scholar
  10. Chouffani, R. (2016). Four uses for artificial intelligence in healthcare. SearchHealthIT, Newton, MA. Retrieved March 02, 2017, from
  11. Cooper, B., & Lipsitch, M. (2004). The analysis of hospital infection data using hidden Markov models. Biostatistics, 5(2), 223–237.CrossRefPubMedGoogle Scholar
  12. Costa, A., Cabestany, J., Moreno, J., & Calvet, M. (1998). Neuroserum: An artificial neural NetBased diagnostic aid tool for serum electrophoresis. In Third international conference on neural networks and expert systems in medicine and healthcare (pp. 34–43).Google Scholar
  13. Cross, S. S., & Harrison, R. F. (1998). Making the distinction between Crohn’s disease and ulcerative colitis by histopathological examination: A comparison of human performance, Logistic Regression and Adaptive Resonance Theory Mapping Neural Networks (ARTMAP). In Third international conference on neural networks and expert systems in medicine and healthcare (pp. 116–124).Google Scholar
  14. de Haan, W., Pijnenburg, Y. A., Strijers, R. L., van der Made, Y., van der Flier, W. M., Scheltens, P., et al. (2009). Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neuroscience, 10(1), 101.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks – A review. Pattern Recognition, 35(10), 2279–2301.CrossRefGoogle Scholar
  16. Ghosh-Dastidar, S., Adeli, H., & Dadmehr, N. (2008). Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering, 55(2), 512–518.CrossRefPubMedGoogle Scholar
  17. Gorse, D., Shepherd, A. J., & Taylor, J. G. (1997). The new ERA in supervised learning. Neural Networks, 10(2), 343–352.CrossRefPubMedGoogle Scholar
  18. Hamamoto, I., Okada, S., Hashimoto, T., Wakabayashi, H., Maeba, T., & Maeta, H. (1995). Prediction of the early prognosis of the hepatectomized patient with hepatocellular carcinoma with a neural network. Computers in Biology and Medicine, 25(1), 49–59.CrossRefPubMedGoogle Scholar
  19. Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of segment-freely available software for cardiovascular image analysis. BMC Medical Imaging, 10, 1.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hilado, S. M. D., Gan Lim, L. A., Naguib, R. N. G., Dadios, E. P., & Avila, J. M. C. (2014). Implementation of wavelets and artificial neural networks in colonic histopathological classification. Journal of Advanced Computational Intelligence and Intelligent Informatics, 18(5), 792–797.CrossRefGoogle Scholar
  21. Huang, L., Yu, P., Ju, F., & Cheng, J. (2003). Prediction of response to incision using the mutual information of electroencephalograms during anaesthesia. Medical Engineering & Physics, 25(4), 321–327.CrossRefGoogle Scholar
  22. Ifeachor, E. C., Sperduti, A., & Starita, A. (1998). Neural networks and expert systems in medicine and health care. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  23. Inweregbu, K., Dave, J., & Pittard, A. (2005). Nosocomial infections. Continuing Education in Anaesthesia Critical Care & Pain, 5(1), 14–17.CrossRefGoogle Scholar
  24. Jiang, J., Trundle, P., & Ren, J. (2010). Medical image analysis with artificial neural networks. Computerized Medical Imaging and Graphics, 34(8), 617–631.CrossRefPubMedGoogle Scholar
  25. Kamath, M. V., Upton, A. R., Wu, J., Bajaj, H. S., Poehlman, S., & Spaziani, R. (2006). Artificial neural networks in EEG analysis. In R. Begg, J. Kamruzzaman, & R. Sarker (Eds.), Neural networks in healthcare: Potential and challenges (pp. 177–194). Calgary, AB: Idea Group.CrossRefGoogle Scholar
  26. Kamruzzaman, J., Begg, R., & Sarker, R. (2006). Overview of artificial neural networks and their applications in healthcare. In R. Begg, J. Kamruzzaman, & R. Sarker (Eds.), Neural networks in healthcare: Potential and challenges (pp. 1–19). Calgary, AB: Idea Group.Google Scholar
  27. Khanna, S., Sattar, A., & Hansen, D. (2013). Artificial intelligence in health – The three big challenges. The Australasian Medical Journal, 6(5), 315–317.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lin, Q., Morsi, Y. S., Smith, B., & Yang, W. (2004). Numerical simulation and structure verification of jellyfish heart valve. International Journal of Computer Applications in Technology, 21(1–2), 2–7.CrossRefGoogle Scholar
  29. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., & Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1.CrossRefPubMedGoogle Scholar
  30. McCulloch, J., & Pitts, W. A. (1943). Logical calculus of the ideas imminent in nervous activity. Reprinted in Embodiements of Mind (1965).Google Scholar
  31. McFarland, D. J., & Wolpaw, J. R. (2005). Sensorimotor rhythm-based brain-computer interface (BCI): Feature selection by regression improves performance. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 372–379.CrossRefPubMedGoogle Scholar
  32. Miller, A. S. (1993). The application of neural networks to imaging and signal processing in astronomy and medicine. Doctoral Dissertation. Southampton, UK: University of Southampton.Google Scholar
  33. Moretti, D. V., Babiloni, C., Binetti, G., Cassetta, E., Dal Forno, G., Ferreric, F., et al. (2004). Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clinical Neurophysiology, 115(2), 299–308.CrossRefPubMedGoogle Scholar
  34. Morsi, Y. S. (2014). Bioengineering strategies for polymeric scaffold for tissue engineering an aortic heart valve: An update. The International Journal of Artificial Organs, 37(9), 651–667.CrossRefPubMedGoogle Scholar
  35. Morsi, Y., Ahmad, A., & Hassan, A. (2001). Numerical simulation of the turbulent flow field distal to an aortic heart valve. Frontiers of Medical and Biomedical Engineering, 11(1), 1–11.CrossRefGoogle Scholar
  36. Morsi, Y. S., & Das, S. (2006). Computational fluid dynamics and neural network for modeling and simulations of medical devices. In Neural networks in healthcare: Potential and challenges (pp. 262–283). Hershey, PA: IGI Global.CrossRefGoogle Scholar
  37. Naguib, R. N. G., & Hamdy, F. C. (1998). A general regression neural network analysis of prognostic markers in prostate cancer. Neurocomputing, 19(1–3), 145–150.CrossRefGoogle Scholar
  38. Naguib, R. N. G., Neal, D. E., & Hamdy, F. C. (1998). Neural network analysis of combined conventional and experimental prognostic markers in prostate cancer: A pilot study. British Journal of Cancer, 78(2), 246–250.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Naguib, R. N. G., & Sherbet, G. V. (2001). Artificial neural networks in cancer diagnosis, prognosis and patient management. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
  40. Nazeran, H., & Behbehani, K. (2001). Neural networks in processing and analysis of biomedical signals. Nonlinear Biomedical Signal Processing Fuzzy Logic Neural Networks and New Algorithms, 1, 69–97.Google Scholar
  41. Ohlsson, M., Peterson, C., & Dictor, M. (2001). Using hidden Markov models to characterize disease trajectories. In Proceeding of the neural networks and expert systems in medicine and healthcare conference (pp. 324–326).Google Scholar
  42. Ortolani, O., Conti, A., Di Filippo, A., Adembri, C., Moraldi, E., Evangelisti, A., et al. (2002). EEG signal processing in anaesthesia. Use of a neural network technique for monitoring depth of anaesthesia. British Journal of Anaesthesia, 88(5), 644–648.CrossRefPubMedGoogle Scholar
  43. Özdamar, Ö., & Kalayci, T. (1998). Detection of spikes with artificial neural networks using raw EEG. Computers and Biomedical Research, 31(2), 122–142.CrossRefPubMedGoogle Scholar
  44. Penny, W. D., Roberts, S. J., Curran, E. A., & Stokes, M. J. (2000). EEG-based communication: A pattern recognition approach. IEEE Transactions on Rehabilitation Engineering, 8(2), 214–215.CrossRefPubMedGoogle Scholar
  45. Petrosian, A., Prokhorov, D., Homan, R., Dasheiff, R., & Wunsch, D. (2000). Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing, 30(1), 201–218.CrossRefGoogle Scholar
  46. Petrosian, A. A., Prokhorov, D. V., Lajara-Nanson, W., & Schiffer, R. B. (2001). Recurrent neural network-based approach for early recognition of Alzheimer’s disease in EEG. Clinical Neurophysiology, 112(8), 1378–1387.CrossRefPubMedGoogle Scholar
  47. Ramesh, A. N., Kambhampati, C., Monson, J. R. T., & Drew, P. J. (2004). Artificial intelligence in medicine. Annals of the Royal College of Surgeons of England, 86(5), 334–338.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Robert, C., Gaudy, J. F., & Limoge, A. (2002a). Electroencephalogram processing using neural networks. Clinical Neurophysiology, 113(5), 694–701.CrossRefPubMedGoogle Scholar
  49. Robert, C., Karasinski, P., Arreto, C. D., & Gaudy, J. F. (2002b). Monitoring anesthesia using neural networks: A survey. Journal of Clinical Monitoring and Computing, 17(3), 259–267.CrossRefPubMedGoogle Scholar
  50. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408.CrossRefPubMedGoogle Scholar
  51. Ross, J. V., & Taimre, T. (2007). On the analysis of hospital infection data using Markov models. April 30, 2017, from
  52. Rumelhart, D. E., McClelland, J. L., & PDP Research Group. (1988). Parallel distributed processing (Vol. 1). IEEE.Google Scholar
  53. Sampathkumar, H., Chen, X. W., & Luo, B. (2014). Mining adverse drug reactions from online healthcare forums using hidden Markov model. BMC Medical Informatics and Decision Making, 14(1), 91.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Shapiro, S. C. (1992). Encyclopedia of artificial intelligence (2nd ed., pp. 54–57). New York: Wiley.Google Scholar
  55. Shuttleworth, J. K., Todman, A. G., Naguib, R. N. G., Newman, R. M., & Bennett, M. K. (2008). Texture analysis and classification techniques for cancer diagnosis. In O. C. L. Haas & K. J. Burnham (Eds.), Intelligent and adaptive systems in medicine, Series in medical physics and biomedical engineering (pp. 331–368). New York and London: Taylor and Francis.Google Scholar
  56. Simöes, M. (2010). A hidden Markov model for cancer progression. Master’s thesis, KTH School of Computer Science and Communication, Stockholm.Google Scholar
  57. Sordo, M. (2002). Introduction to neural networks in healthcare. OpenClinical Document: Knowledge Management for Medical Care.Google Scholar
  58. Stamey, T. A., Barnhill, S. D., Zhang, Z., Madyastha, K. R., Prestigiacomo, A. F., Jones, K., et al. (1996). Effectiveness of ProstAsure™ in detecting prostate cancer (PCa) and benign prostatic hyperplasia (BPH) in men age 50 and older. Journal of Urology, 155, 436A.Google Scholar
  59. Teodorescu, H.-N. L., Kandel, A., & Jain, L. C. (1998). Fuzzy and neuro-fuzzy systems in medicine (Vol. 2). Boca Raton, FL: CRC Press.Google Scholar
  60. Tomari, R., Zakaria, W. N. W., Jamil, M. M. A., Nor, F. M., & Fuad, N. F. N. (2014). Computer aided system for red blood cell classification in blood smear image. Procedia Computer Science, 42, 206–213.CrossRefGoogle Scholar
  61. Tomatis, S., Bono, A., Bartoli, C., Carrara, M., Lualdi, M., Tragni, G., et al. (2003). Automated melanoma detection: Multispectral imaging and neural network approach for classification. Medical Physics, 30(2), 212–221.CrossRefPubMedGoogle Scholar
  62. Verrelst, H., Vandewalle, J., De Moor, B., & Timmerman, D. (1998). Bayesian input selection for neural network classifiers. In Proceeding of the third international conference on neural networks and expert systems in medicine and healthcare (NNESMED98) (pp. 125–132).Google Scholar
  63. Werbos, P.J. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University, Cambridge, MA.Google Scholar
  64. Zhang, X. S., & Roy, R. J. (2001). Derived fuzzy knowledge model for estimating the depth of anesthesia. IEEE Transactions on Biomedical Engineering, 48(3), 312–323.CrossRefPubMedGoogle Scholar
  65. Zhang, X. S., Roy, R. J., Schwender, D., & Daunderer, M. (2001). Discrimination of Anesthetic states using mid-latency auditory evoked potentials and artificial neural networks. Annals of Biomedical Engineering, 29(5), 446–453.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Arturo CarononganIII
    • 1
  • Hannah Gorgui-Naguib
    • 2
  • Raouf N. G. Naguib
    • 3
    • 4
  1. 1.De La Salle UniversityManilaPhilippines
  2. 2.King’s College LondonLondonUK
  3. 3.Liverpool Hope UniversityLiverpoolUK
  4. 4.BIOCORE Research & Consultancy LtdLiverpoolUK

Personalised recommendations