Direct Method for Producing Scandium Metal and Scandium-Aluminium Intermetallic Compounds from the Oxides

  • Ana Maria MartinezEmail author
  • Karen Sende Osen
  • Henrik Gudbrandsen
  • Camilla Sommerseth
  • Zhaohui Wang
  • Ove Darell
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


The electrochemical de-oxidation process, also called FFC-Cambridge process, has been proposed previously to produce reactive metals and their alloys through reduction of their metal oxides. The process works by introducing metal oxides into a molten salt bath where it is electrolysed to form metal powders offering both economic and environmental benefits over the traditional metal production methods. Within the frame of the EU-financed project SCALE (GA 730105), SINTEF is investigating the optimal parameters of the direct electrolytic reduction of Sc2O3 and Sc2O3–Al2O3 precursors (dross from Al-Sc alloy production), giving Sc and Al-Sc metallic powders, respectively, in a molten CaCl2-based electrolyte at a working temperature of ca. 900 °C. The influence of the applied cathodic potential in the reduction mechanism and in the metal product has been studied.


Scandium metal Scandium-aluminium FFC-process Electrochemical de-oxidation Scandium oxide Molten chlorides 



This work has received funding from the European Union’s H2020 Programme under Grant Agreement No. 730105 (SCALE project:


  1. 1.
    J. Røyset and N. Ryum, Inter. Mater. Rev., 50 (2005) 19.Google Scholar
  2. 2.
    G.Z. Chen, D.J. Fray and T.W. Farthing, Nature, 407 (6802) (2000) 361.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    D. A. Wenz, I. Johnson and R. D. Wolson: J. Chem. Eng. Data 14 (2) (1969) 250–252.CrossRefGoogle Scholar
  5. 5.
    K. Ono and R. O. Suzuki, JOM, 54(2) (2002) 164–166.Google Scholar
  6. 6.
    HSC 7.11 © Outotec Research Center, 1974–2011.Google Scholar
  7. 7.
    M. Harata, T. Nakamura, H. Yakushiji and T.H. Okabe, Trans. Inst. Min. Metall. Sect. C, 117 (2) (2008).Google Scholar
  8. 8.
    E.g. S.J. Oosthuizen, J. South. African Inst. Min. and Metall., 11 (2011) 199–202.Google Scholar
  9. 9.
    M. Maeda and A. McLean, Trans. ISS (1986) 61–65.Google Scholar
  10. 10.
    Ito, Shimada and Kawamura, Proc. Electrochem. Soc. (1992) 574.Google Scholar
  11. 11.
  12. 12.
    R.A. Sharma, J. Phys. Chem., 74 (1974) 3896–3900.Google Scholar
  13. 13.
    M.A. Bredie, in “Molten Salt Chemistry,” M. Blander (Ed.), Interscience, New York, (1964) p 364.Google Scholar
  14. 14.
    J.D. Corbett, in “Fused Salts” B.R. Sundheim (Ed.), McGraw-Hill, New York (1964) p 341.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  • Ana Maria Martinez
    • 1
    Email author
  • Karen Sende Osen
    • 1
  • Henrik Gudbrandsen
    • 1
  • Camilla Sommerseth
    • 1
  • Zhaohui Wang
    • 1
  • Ove Darell
    • 1
  1. 1.SINTEF Materials and ChemistryTrondheimNorway

Personalised recommendations