Advertisement

Preserving Cultural Heritage Stone: Innovative Consolidant, Superhydrophobic, Self-Cleaning, and Biocidal Products

  • Rafael Zarzuela
  • Manuel Luna
  • Luis A.M. Carrascosa
  • Maria J. Mosquera
Chapter

Abstract

Most products commonly employed in the restoration and conservation of cultural heritage stone have not been specifically developed to preserve such elements. In addition, they are plagued by limited performance and structural drawbacks such as low adhesion, poor penetration, and cracking. Another disadvantage is the requirement for most products to be dissolved in volatile organic compounds (VOCs), which produce environmental and human health risks in their use. An innovative sol–gel route for preserving cultural heritage stonework has been developed and is discussed herein. Specifically, a surfactant-assisted sol–gel synthesis produces, in situ on the stonework, crack-free nanomaterials to be used as long-term consolidants. Additionally, hydrophobic, water-repellent, self-cleaning, and biocidal properties can be incorporated into the product by innovative chemical modifications of the proposed synthesis route.

Keywords

Surfactant Consolidant Hydrophobic/superhydrophobic Photocatalytic Biocide 

Notes

Acknowledgments

We wish to express our gratitude for the financial support from the Spanish Government MINECO/FEDER-EU (MAT2013-42934-R) and the Regional Government of Andalusia (Group TEP-243). R. Zarzuela and M. Luna would also like to thank the Spanish Government for their predoctoral grants (FPU14/02054 and BES-2014-068031).

References

  1. 1.
    Chang D, Liu J. Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil. Sci Cold Arid Reg. 2013;5(4):457–60.CrossRefGoogle Scholar
  2. 2.
    Hall K, Thorn CE. Thermal fatigue and thermal shock in bedrock: an attempt to unravel the geomorphic processes and products. Geomorphology. 2014;206:1–13.CrossRefGoogle Scholar
  3. 3.
    Shi XJ, Shi XF. Numerical prediction on erosion damage caused by wind-blown sand movement. Eur J Environ Civ Eng. 2014;18:550–66.CrossRefGoogle Scholar
  4. 4.
    El-Gohary MA. A holistic approach to the assessment of the groundwater destructive effects on stone decay in Edfu temple using AAS, SEM-EDX and XRD. Environ Earth Sci. 2016;75:13.CrossRefGoogle Scholar
  5. 5.
    Dragovich D, Egan M. Salt weathering and experimental desalination treatment of building sandstone, Sydney (Australia). Environ Earth Sci. 2011;62:277–88.CrossRefGoogle Scholar
  6. 6.
    Friedrich EWE. Solubilization, transport and deposition of mineral cations by microorganisms-efficient rock weathering agents. In: Drever JI, editor. The Chemistry of Weathering. 1st ed. Dordrecht: Springer Netherlands; 1985;161–173.Google Scholar
  7. 7.
    Tiano P. Biodegradation of cultural heritage: decay mechanisms and control methods. CNR-Centro di Stud Sulle Cause Deperimento e Metod Conserv Opere d’Arte. 2001;9:1–37.Google Scholar
  8. 8.
    Diakumaku E, Gorbushina AA, Krumbein WE, et al. Black fungi in marble and limestones—an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ. 1995;167:295–304.CrossRefGoogle Scholar
  9. 9.
    Saiz-Jimenez C. Microbial melanins in stone monuments. Sci Total Environ. 1995;167:273–86.CrossRefGoogle Scholar
  10. 10.
    Randazzo L, Montana G, Alduina R, et al. Flos Tectorii degradation of mortars: an example of synergistic action between soluble salts and biodeteriogens. J Cult Herit. 2015;16:838–47.CrossRefGoogle Scholar
  11. 11.
    Zanardini E, Abbruscato P, Ghedini N, et al. Influence of atmospheric pollutants on the biodeterioration of stone. Int Biodeter Biodegr. 2000;46:8305.CrossRefGoogle Scholar
  12. 12.
    Miller AZ, Sanmartín P, Pereira-Pardo L, et al. Bioreceptivity of building stones: a review. Sci Total Environ. 2012;426:1–12.CrossRefGoogle Scholar
  13. 13.
    Doehne E, Price CA. Stone conservation: An Overwiew of Current Research. 2nd ed. Los Angeles: Getty Publications; 2010.Google Scholar
  14. 14.
    Sang YK, Man CS, Un YK, Hyung JK. Conservation study of stones by using acrylic monomer. Polymer. 2008;32:213–8.Google Scholar
  15. 15.
    Barberio M, Veltri S, Imbrogno A, Stranges F, Bonano A, Antici P. TiO2 and SiO2 nanoparticles film for cultural heritage: conservation and consolidation of ceramic artifacts. Surf Coat Technol. 2015;271:174–80.CrossRefGoogle Scholar
  16. 16.
    Costa D, Rodrigues JD. Consolidation of a porous limestone with nanolime. 12th International Congress on the Deterioration and Conservation of Stone.Google Scholar
  17. 17.
    Ivask A, George S, Bondarenko O, Kahru A. Nano-antimicrobials. 1st ed. Berlin: Springer; 2012.Google Scholar
  18. 18.
    Carrillo-González R, Martínez-Gómez MA, González-Chávez MDCA, Mendoza Hernández JC. Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Sci Total Environ. 2016;565:872–81.CrossRefGoogle Scholar
  19. 19.
    Wheeler G. Alkoxysilanes and the consolidation of stone. 1st ed. Los Angeles: Getty Publications; 2005.Google Scholar
  20. 20.
    Pinto APF, Rodrigues JD. Stone consolidation: the role of treatment procedures. J Cult Herit. 2008;9:38–53.CrossRefGoogle Scholar
  21. 21.
    Scherer GW. Recent progress in drying of gels. J Non Cryst Solids. 1992;147–148:363–74.CrossRefGoogle Scholar
  22. 22.
    Mosquera MJ, de los Santos DM, Rivas T. Surfactant-synthesized ormosils with application to stone restoration. Langmuir. 2010;26:6737–45.CrossRefGoogle Scholar
  23. 23.
    Illescas JF, Mosquera MJ. Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. J Phys Chem C. 2011;115:14624–34.CrossRefGoogle Scholar
  24. 24.
    Illescas JF, Mosquera MJ. Producing surfactant synthesized nanomaterials in situ on a building susbstrate, without volatile organic compounds. Appl Mater Interfaces. 2012;4:4259–69.CrossRefGoogle Scholar
  25. 25.
    Facio DS, Mosquera MJ. Simple strategy for producing superhydrophobic nanocomposite coatings in situ on a building substrate. ACS Appl Mater Interfaces. 2013;5:7517–26.CrossRefGoogle Scholar
  26. 26.
    Carrascosa LAM, Facio DS, Mosquera MJ. Producing superhydrophobic roof tiles. Nanotechnology. 2016;27:95604.CrossRefGoogle Scholar
  27. 27.
    Pinho L, Mosquera MJ. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C. 2011;115:22851–62.CrossRefGoogle Scholar
  28. 28.
    Pinho L, Hernández-Garrido JC, Calvino JJ, Mosquera MJ. 2D and 3D characterization of a surfactant-synthesized TiO2–SiO2 mesoporous photocatalyst obtained at ambient temperature. Phys Chem Chem Phys. 2013;15:2800–8.CrossRefGoogle Scholar
  29. 29.
    Zarzuela R, Carbú M, Gil MLA, et al. CuO/SiO2 nanocomposites: a multifunctional coating for application on building stone. Mater Des. 2017;114:364–72.CrossRefGoogle Scholar
  30. 30.
    Mosquera MJ, de los Santos DM, Montes A, Valdez-Castro L. New nanomaterials for consolidating stone. Langmuir. 2008;24:2772–8.CrossRefGoogle Scholar
  31. 31.
    Facio DS, Luna M, Mosquera MJ. Facile preparation of mesoporous silica monoliths by an inverse micelle mechanism. Microporous Mesoporous Mater. 2017;247:166–76.CrossRefGoogle Scholar
  32. 32.
    Rodrigues JD, Grossi A. Indicators and ratings for the compatibility assessment of conservation actions. J Cult Herit. 2007;8:32–43.CrossRefGoogle Scholar
  33. 33.
    De Rosario I, Elhaddad F, Pan A, et al. Effectiveness of a novel consolidant on granite: laboratory and in situ results. Construct Build Mater. 2015;76:140–9.CrossRefGoogle Scholar
  34. 34.
    Figueiredo MO, Silva TP, Veiga JP. Analysis of degradation phenomena in ancient, traditional and improved building materials of historical monuments. Appl Phys A Mater Sci Process. 2008;92:151–4.CrossRefGoogle Scholar
  35. 35.
    Charola AE. Acid rain effects on stone monuments. J Chem Educ. 1987;64:436.CrossRefGoogle Scholar
  36. 36.
    Bravo AH, Soto AR, Sosa ER, et al. Effect of acid rain on building material of the El Tajín archaeological zone in Veracruz, Mexico. Environ Pollut. 2006;144:655–60.CrossRefGoogle Scholar
  37. 37.
    Young T. An essay on the cohesion of fluids. Philos Trans R Soc Lond A. 1805;95:65–87.CrossRefGoogle Scholar
  38. 38.
    Gao L, McCarthy TJ. A perfectly hydrophobic surface (θ(A)/θ(R) = 180°/180°). J Am Chem Soc. 2006;128:9052–3.CrossRefGoogle Scholar
  39. 39.
    Gao L, McCarthy TJ. Wetting 101o. Langmuir. 2009;25:14105–15.CrossRefGoogle Scholar
  40. 40.
    Lafuma A, Quéré D. Superhydrophobic states. Nat Mater. 2003;2:457–60.CrossRefGoogle Scholar
  41. 41.
    Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546–51.CrossRefGoogle Scholar
  42. 42.
    Sun T, Feng L, Gao X, Jiang L. Bioinspired surfaces with special wettability. Acc Chem Res. 2005;38:644–52.CrossRefGoogle Scholar
  43. 43.
    Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem. 1936;28:988–94.CrossRefGoogle Scholar
  44. 44.
    Manoudis PN, Papadopoulou S, Karapanagiotis I, et al. Polymer-silica nanoparticles composite films as protective coatings for stone-based monuments. J Phys Conf Ser. 2007;61:1361–5.CrossRefGoogle Scholar
  45. 45.
    Bhushan B, Her EK. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir. 2010;26:8207–17.CrossRefGoogle Scholar
  46. 46.
    Facio DS, Carrascosa LAM, Mosquera MJ. Producing lasting amphiphobic building surfaces with self-cleaning properties. Nanotechnology. 2017;28:265601.CrossRefGoogle Scholar
  47. 47.
    Fujishima A, Honda K. Electrochemical photolisis of water at a semiconductor electrode. Nature. 1972;238:37–8.CrossRefGoogle Scholar
  48. 48.
    Chen J, Poon CS. Photocatalytic construction and building materials: from fundamentals to applications. Build Environ. 2009;44:1899–906.CrossRefGoogle Scholar
  49. 49.
    Gherardi F, Colombo A, D’Arienzo M, et al. Efficient self-cleaning treatments for built heritage based on highly photo-active and well-dispersible TiO2 nanocrystals. Microchem J. 2016;126:54–62.CrossRefGoogle Scholar
  50. 50.
    Liu Q, Liu Q, Zhu Z, et al. Application of TiO2 photocatalyst to the stone conservation. Mater Res Innov. 2015;19:S8-51–4.CrossRefGoogle Scholar
  51. 51.
    Bergamonti L, Alfieri I, Lorenzi A, et al. Nanocrystalline TiO2 coatings by sol–gel: photocatalytic activity on Pietra di Noto biocalcarenite. J Sol-Gel Sci Technol. 2015;75:141–51.CrossRefGoogle Scholar
  52. 52.
    Licciulli A, Calia A, Lettieri M, et al. Photocatalytic TiO2 coatings on limestone. J Sol-Gel Sci Technol. 2011;60:437–44.CrossRefGoogle Scholar
  53. 53.
    Quagliarini E, Bondioli F, Goffredo GB, et al. Smart surfaces for architectural heritage: preliminary results about the application of TiO2-based coatings on travertine. J Cult Herit. 2012;13:204–9.CrossRefGoogle Scholar
  54. 54.
    Quagliarini E, Bondioli F, Goffredo GB, et al. Self-cleaning and de-polluting stone surfaces: TiO2 nanoparticles for limestone. Construct Build Mater. 2012;37:51–7.CrossRefGoogle Scholar
  55. 55.
    Mendoza C, Valle A, Castellote M, et al. TiO2 and TiO2–SiO2 coated cement: comparison of mechanic and photocatalytic properties. Appl Catal Environ. 2015;178:155–64.CrossRefGoogle Scholar
  56. 56.
    Rao KVS, Subrahmanyam M, Boule P. Immobilized TiO2 photocatalyst during long-term use: decrease of its activity. Appl Catal Environ. 2004;49:239–49.CrossRefGoogle Scholar
  57. 57.
    Calia A, Lettieri M, Masieri M. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Build Environ. 2016;110:1–10.CrossRefGoogle Scholar
  58. 58.
    Borsoi G, Veiga R, Silva AS. Effect of nanostructured lime-based and silica-based products on the consolidation of historical renders. In: University of West Scotland, editors. Proceedings of the 3rd historic mortars conference. Glasgow; 2013.Google Scholar
  59. 59.
    Pinho L, Elhaddad F, Facio DS, Mosquera MJ. A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci. 2013;275:389–96.CrossRefGoogle Scholar
  60. 60.
    Pinho L, Mosquera MJ. Photocatalytic activity of TiO2-SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal Environ. 2013;134–135:205–21.CrossRefGoogle Scholar
  61. 61.
    Zhou X, Liu G, Yu J, Fan W. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J Mater Chem. 2012;22:21337–54.CrossRefGoogle Scholar
  62. 62.
    Pinho L, Rojas M, Mosquera MJ. Ag-SiO2-TiO2 nanocomposite coatings with enhanced photoactivity for self-cleaning application on building materials. Appl Catal Environ. 2014;178:144–54.CrossRefGoogle Scholar
  63. 63.
    Eyssautier-Chuine S, Gommeaux M, Moreau C, et al. Assessment of new protective treatments for porous limestone combining water-repellency and anti-colonization properties. Q J Eng Geol Hydrogeol. 2014;47:177–87.CrossRefGoogle Scholar
  64. 64.
    Perkas N, Lipovsky A, Amirian G, et al. Biocidal properties of TiO2 powder modified with Ag nanoparticles. J Mater Chem B. 2013;1:5309.CrossRefGoogle Scholar
  65. 65.
    Ruffolo SA, La Russa MF, Malagodi M, et al. ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A Mater Sci Process. 2010;100:829–34.CrossRefGoogle Scholar
  66. 66.
    Ditaranto N, van der Werf ID, Picca RA, et al. Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks. New J Chem. 2015;39:6836–43.CrossRefGoogle Scholar
  67. 67.
    Arreche R, Bellotti N, Blanco M, Vázquez P. Improved antimicrobial activity of silica–Cu using a heteropolyacid and different precursors by sol–gel: synthesis and characterization. J Sol-Gel Sci Technol. 2015;75:374–82.CrossRefGoogle Scholar
  68. 68.
    Eyssautier-Chuine S, Vaillant-Gaveau N, Gommeaux M, et al. Efficacy of different chemical mixtures against green algal growth on limestone: a case study with Chlorella vulgaris. Int Biodeter Biodegr. 2015;103:59–68.CrossRefGoogle Scholar
  69. 69.
    MacMullen J, Zhang Z, Dhakal HN, et al. Silver nanoparticulate enhanced aqueous silane/siloxane exterior facade emulsions and their efficacy against algae and cyanobacteria biofouling. Int Biodeter Biodegr. 2014;93:54–62.CrossRefGoogle Scholar
  70. 70.
    Moreau C, Vergès-Belmin V, Leroux L, et al. Water-repellent and biocide treatments: assessment of the potential combinations. J Cult Herit. 2008;9:394–400.CrossRefGoogle Scholar
  71. 71.
    Young M, Santra S. Copper (cu)–silica nanocomposite containing valence-engineered Cu: a new strategy for improving the antimicrobial efficacy of Cu biocides. J Agric Food Chem. 2014;62:6043–52.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rafael Zarzuela
    • 1
  • Manuel Luna
    • 1
  • Luis A.M. Carrascosa
    • 1
  • Maria J. Mosquera
    • 1
  1. 1.TEP-243 Nanomaterials Group, Dto. Química-Física, Facultad de Ciencias, Campus Universitario Río San PedroUniversidad de CádizCádizSpain

Personalised recommendations