Nonlinear Excitations in Graphene and Other Carbon Nano-Polymorphs

  • Sergey V. DmitrievEmail author
  • Julia A. Baimova
  • Elena A. Korznikova
  • Alexander P. Chetverikov
Part of the Understanding Complex Systems book series (UCS)


This review summarizes recent developments in the numerical investigations of nonlinear dynamics of graphene, carbon nanotubes, and fullerenes. Discrete breathers (DBs) or, synonymously, intrinsic localized modes are discussed together with the nonlinear delocalised vibrational modes (DVM). These nonlinear excitations are expected to considerably affect physical and mechanical properties of \(sp^2\) carbon nanomaterials, for example, their thermal and electrical conductivity, defect nucleation and healing, etc. Our knowledge of the DB properties in carbon nanomaterials is insufficient for designing a setup for their reliable experimental observation, that is why numerical studies in this area are of crucial importance today. It is indicated that the results obtained by molecular dynamics method significantly depend on the interatomic potentials, making verification of these results by first-principle modelling indispensable. Finally, the associated challenges and prospects on the future study of nonlinear excitations in graphene and other carbon nanomaterials are discussed.


Graphene Carbon nanotube Fullerene Discrete breather Intrinsic localized mode Delocalized vibrational mode Molecular dynamics ab-initio simulations 



S.V.D. would like to thank financial support from the Russian Science Foundation, grant no. 14-13-00982. E.A.K., and A.P.Ch. would like to thank financial support from the Russian Science Foundation, grant no. 16-12-10175.

J.A.B. acknowledges financial support from the Scholarship of the President of the Russian Federation for young scientists and PhD students SP-4037.2015.1.


  1. 1.
    Archilla, J.F.R., Coelho, S.M.M., Auret, F.D., Dubinko, V.I., Hizhnyakov, V.: Long range annealing of defects in germanium by low energy plasma ions. Phys. D 297, 56–61 (2015)CrossRefGoogle Scholar
  2. 2.
    Archilla, J.F.R., Russell, F.M.: On the charge of quodons. Lett. Mater. 6, 3–8 (2016)CrossRefGoogle Scholar
  3. 3.
    Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D 103, 201–250 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bahadir, E.B., Sezginturk, M.K.: Applications of graphene in electrochemical sensing and biosensing. Trends Anal. Chem. 76, 1–14 (2016)CrossRefGoogle Scholar
  5. 5.
    Baimova, J.: Property control by elastic strain engineering: application to graphene. J. Micromech. Mol. Phys. 2, 1750001 (2016)Google Scholar
  6. 6.
    Baimova, J.A., Dmitriev, S.V., Zhou, K.: Discrete breather clusters in strained graphene. Europhys. Lett. 100, 36005 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Baimova, J.A., Dmitriev, S.V., Zhou, K., Savin, A.V.: Unidirectional ripples in strained graphene nanoribbons with clamped edges at zero and finite temperatures. Phys. Rev. B 86, 035427 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    Baimova, J.A., Korznikova, E.A., Lobzenko, I.P., Dmitriev, S.V.: Discrete breathers in carbon and hydrocarbon nanostructures. Rev. Adv. Mater. Sci. 42, 68–82 (2015)Google Scholar
  9. 9.
    Baimova, J.A., Liu, B., Dmitriev, S.V., Zhou, K., Nazarov, A.A.: Effect of Stone-Thrower-Wales defect on structural stability of graphene at zero and finite temperatures. Europhys. Lett. 103, 46001 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    Baimova, Y.A., Dmitriev, S.V., Savin, A.V., Kivshar, Y.S.: Velocities of sound and the densities of phonon states in a uniformly strained flat graphene sheet. Phys. Solid State 54, 866–874 (2012)Google Scholar
  11. 11.
    Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Barani, E., Lobzenko, I.P., Korznikova, E.A., Soboleva, E.G., Dmitriev, S.V., Zhou, K., Marjaneh, A.M.: Transverse discrete breathers in unstrained graphene. Eur. Phys. J. B 90, 38 (2017)Google Scholar
  13. 13.
    Binder, P., Abraimov, D., Ustinov, A.V., Flach, S., Zolotaryuk, Y.: Observation of breathers in Josephson ladders. Phys. Rev. Lett. 84, 745–748 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P., Stormer, H.L.: Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    Burlakov, V.M., Kiselev, S.A., Rupasov, V.I.: Localized excitations of uniform anharmonic lattices. JETP Lett. 51, 544–547 (1990)ADSGoogle Scholar
  17. 17.
    Campbell, D.K., Flach, S., Kivshar, Y.S.: Localizing energy through nonlinearity and discreteness. Phys. Today 57, 43 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Chechin, G.M., Dmitriev, S.V., Lobzenko, I.P., Ryabov, D.S.: Properties of discrete breathers in graphane from ab initio simulations. Phys. Rev. B 90, 045432 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    Chechin, G.M., Lobzenko, I.P.: Ab initio refining of quasibreathers in graphane. Lett. Mater. 4, 226–229 (2014)CrossRefGoogle Scholar
  20. 20.
    Chechin, G.M., Ryabov, D.S., Shcherbinin, S.A.: Nonlinear vibrational modes in graphene: group-theoretical results. Lett. Mater. 6, 9–15 (2016)CrossRefGoogle Scholar
  21. 21.
    Chechin, G.M., Sakhnenko, V.P.: Interactions between normal modes in nonlinear dynamical systems with discrete symmetry. Exact results. Phys. D 117, 43–76 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chechin, G.M., Sizintsev, D.A., Usoltsev, O.A.: Properties of pi-mode vibrations in strained carbon chains. Lett. Mater. 6, 146–151 (2016)CrossRefGoogle Scholar
  23. 23.
    Chechin, G.M., Usoltsev, O.A., Sizintsev, D.A.: On stability of nonlinear atomic vibrations in strained carbon chains. Lett. Mater. 6, 309–316 (2016)CrossRefGoogle Scholar
  24. 24.
    Chetverikov, A.P., Ebeling, W., Lakhno, V.D., Shigaev, A.S., Velarde, M.G.: On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along dna-like molecular wires with no need of an external electric field: mechanical control of electrons. Eur. Phys. J. B 89, 101 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Chetverikov, A.P., Ebeling, W., Velarde, M.G.: On the temperature dependence of fast electron transport in crystal lattices. Eur. Phys. J. B 88, 202 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Long-range electron transport donor-acceptor in nonlinear lattices. Entropy 18, 92 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Soliton assisted control of source to drain electron transport along natural channels crystallographic axes in two-dimensional triangular crystal lattices. Eur. Phys. J. B 89, 196 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    Cuevas, J., Archilla, J.F.R., Sanchez-Rey, B., Romero, F.R.: Interaction of moving discrete breathers with vacancies. Phys. D 216, 115–120 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Dmitriev, S.V.: Discrete breathers in crystals: energy localization and transport. J. Micromech. Mol. Phys. 1, 1630001 (2016)CrossRefGoogle Scholar
  30. 30.
    Dmitriev, S.V., Baimova, J.A., Savin, A.V., Kivshar, YuS: Ultimate strength, ripples, sound velocities, and density of phonon states of strained graphene. Comput. Mater. Sci. 53, 194–203 (2012)CrossRefGoogle Scholar
  31. 31.
    Dmitriev, S.V., Chetverikov, A.P., Velarde, M.G.: Discrete breathers in 2D and 3D crystals. Phys. Status Solidi B 252, 1682–1686 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Dmitriev, S.V., Korznikova, E.A., Baimova, J.A., Velarde, M.G.: Discrete breathers in crystals. Phys. Usp. 59, 446–461 (2016)Google Scholar
  33. 33.
    Doi, Y., Nakatani, A.: Structure and stability of nonlinear vibration mode in graphene sheet. In: Procedia Engineering, Proceedings of the 11th International Conference On The Mechanical Behavior Of Materials (ICM11), vol. 10, pp. 3393–3398 (2011). Como, Italy (2011)Google Scholar
  34. 34.
    Doi, Y., Nakatani, A.: Numerical study on unstable perturbation of intrinsic localized modes in graphene. J. Solid. Mech. Mater. Eng. 6, 71–80 (2012)CrossRefGoogle Scholar
  35. 35.
    Doi, Y., Nakatani, A.: Structure and stability of discrete breather in zigzag and armchair carbon nanotubes. Lett. Mater. 6, 49–53 (2016)CrossRefGoogle Scholar
  36. 36.
    Dubinko, V.I., Archilla, J.F.R., Dmitriev, S.V., Hizhnyakov, V.: Rate theory of acceleration of defect annealing driven by discrete breathers. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons in Mica: Nonlinear Localized Travelling Excitations in Crystals, Springer Series in Materials Science, vol. 221, pp. 381–398 (2015)Google Scholar
  37. 37.
    Evazzade, I., Lobzenko, I.P., Korznikova, E.A., Ovidko, I.A., Roknabadi, M.R., Dmitriev, S.V.: Energy transfer in strained graphene assisted by discrete breathers excited by external ac driving. Phys. Rev. B 95, 035423 (2017)ADSCrossRefGoogle Scholar
  38. 38.
    Ferrari, A.C., et al.: Science and technology roadmap for graphene, related two-dimensional crystals and hybrid systems. Nanoscale 7, 4598–4810 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    Flach, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295, 181–264 (1998)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Flach, S., Willis, C.R.: Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array. Phys. Rep. 467, 1–116 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Fraile, A., Koukaras, E.N., Papagelis, K., Lazarides, N., Tsironis, G.P.: Long-lived discrete breathers in free-standing graphene. Chaos Soliton Fract. 87, 262–267 (2016)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Geniet, F., Leon, J.: Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. 89, 134102 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Haas, M., Hizhnyakov, V., Shelkan, A., Klopov, M., Sievers, A.J.: Prediction of high-frequency intrinsic localized modes in Ni and Nb. Phys. Rev. B 84, 144303 (2011)Google Scholar
  44. 44.
    Hizhnyakov, V., Haas, M., Shelkan, A., Klopov, M.: Theory and molecular dynamics simulations of intrinsic localized modes and defect formation in solids. Phys. Scr. 89, 044003 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Hizhnyakov, V., Haas, M., Shelkan, A., Klopov, M.: Standing and moving discrete breathers with frequencies above the phonon spectrum. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons In Mica: Nonlinear Localized Travelling Excitations In Crystals, Springer Series in Materials Science, vol. 221, pp. 229–245 (2015)Google Scholar
  46. 46.
    Hizhnyakov, V., Klopov, M., Shelkan, A.: Transverse intrinsic localized modes in monatomic chain and in graphene. Phys. Lett. A 380, 1075 (2016)ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    Hizhnyakov, V., Shelkan, A., Haas, M., Klopov, M.: Discrete breathers above phonon spectrum. Lett. Mater. 6, 61–72 (2016)CrossRefGoogle Scholar
  48. 48.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)ADSCrossRefGoogle Scholar
  49. 49.
    Kevrekidis, P.G., Dmitriev, S.V., Takeno, S., Bishop, A.R., Aifantis, E.C.: Rich example of geometrically induced nonlinearity: From rotobreathers and kinks to moving localized modes and resonant energy transfer. Phys. Rev. E 70, 066627 (2004)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    Khadeeva, L.Z., Dmitriev, S.V.: Discrete breathers in crystals with NaCl structure. Phys. Rev. B 81, 214306 (2010)ADSCrossRefzbMATHGoogle Scholar
  51. 51.
    Khadeeva, L.Z., Dmitriev, S.V., Kivshar, Y.S.: Discrete breathers in deformed graphene. JETP Lett. 94, 539–543 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    Khomeriki, R., Lepri, S., Ruffo, S.: Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model. Phys. Rev. E 70, 066626 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    Kimura, M., Mitani, A., Doi, S.: Existence and stability of intrinsic localized modes in a finite FPU chain placed in three-dimensional space. Lett. Mater. 6, 22–26 (2016)ADSCrossRefGoogle Scholar
  54. 54.
    Kinoshita, Y., Yamayose, Y., Doi, Y., Nakatani, A., Kitamura, T.: Selective excitations of intrinsic localized modes of atomic scales in carbon nanotubes. Phys. D 77, 024307 (2008)ADSGoogle Scholar
  55. 55.
    Kiselev, S.A., Sievers, A.J.: Generation of intrinsic vibrational gap modes in three-dimensional ionic crystals. Phys. Rev. B 55, 5755 (1997)ADSCrossRefGoogle Scholar
  56. 56.
    Kistanov, A.A., Baimova, Y.A., Dmitriev, S.V.: A molecular dynamics study of [111]-polarized gap discrete breathers in a crystal with NaCl-type structure. Tech. Phys. Lett. 38, 676 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    Kistanov, A.A., Dmitriev, S.V., Chetverikov, A.P., Velarde, M.G.: Head-on and head-off collisions of discrete breathers in two-dimensional anharmonic crystal lattices. Eur. Phys. J. B 87, 211 (2014)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Kistanov, A.A., Dmitriev, S.V., Semenov, A.S., Dubinko, V.I., Terentev, D.A.: Interaction of propagating discrete breathers with a vacancy in a two-dimensional crystal. Tech. Phys. Lett. 40, 657 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    Kopidakis, G., Aubry, S.: Discrete breathers in realistic models: hydrocarbon structures. Phys. B 296, 237–250 (2001)Google Scholar
  60. 60.
    Korznikova, E.A., Bachurin, D.V., Fomin, SYu., Chetverikov, A.P., Dmitriev, S.V.: Instability of vibrational modes in hexagonal lattice. Eur. Phys. J. B 90, 23 (2017)ADSCrossRefGoogle Scholar
  61. 61.
    Korznikova, E.A., Baimova, J.A., Dmitriev, S.V.: Effect of strain on gap discrete breathers at the edge of armchair graphene nanoribbons. Europhys. Lett. 102, 60004 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    Korznikova, E.A., Dmitriev, S.V.: Moving wrinklon in graphene nanoribbons. J. Phys. D Appl. Phys. 47, 345307 (2014)Google Scholar
  63. 63.
    Korznikova, E.A., Fomin, SYu., Soboleva, E.G., Dmitriev, S.V.: Highly symmetric discrete breather in a two-dimensional Morse crystal. JETP Lett. 103, 277–281 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    Korznikova, E.A., Savin, A.V., Baimova, Y.A., Dmitriev, S.V., Mulyukov, R.R.: Discrete breather on the edge of the graphene sheet with the armchair orientation. JETP Lett. 99, 222–226 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    Kroto, H.W., Heath, J.R., Obrien, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162–163 (1985)ADSCrossRefGoogle Scholar
  66. 66.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSCrossRefGoogle Scholar
  67. 67.
    Lindsay, L., Broido, D.A.: Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)ADSCrossRefGoogle Scholar
  68. 68.
    Liu, B., Baimova, J.A., Zhou, K., Dmitriev, S.V., Wang, X., Zhu, H.: Discrete breathers in hydrogenated graphene. J. Phys. D: Appl. Phys. 46, 305302 (2013)CrossRefGoogle Scholar
  69. 69.
    Lobzenko, I., Dmitriev, S., Baimova, J., Dzhelauhova, G.: Numerical studies of discrete quasibreathers in graphene in the framework of density functional theory. Mater. Sci. Forum 845, 215–218 (2016)CrossRefGoogle Scholar
  70. 70.
    Lobzenko, I.P.: Discrete breathers properties obtained from ab-initio calculations in graphene and graphane. Lett. Mater. 6, 73–76 (2016)CrossRefGoogle Scholar
  71. 71.
    Lobzenko, I.P., Chechin, G.M., Bezuglova, G.S., Baimova, YuA., Korznikova, E.A., Dmitriev, S.V.: Ab initio simulation of gap discrete breathers in strained graphene. Phys. Solid State 58, 633–639 (2016)Google Scholar
  72. 72.
    Los, J.H., Fasolino, A.: Intrinsic long-range bond-order potential for carbon: performance in Monte Carlo simulations of graphitization. Phys. Rev. B 68, 024–107 (2003)CrossRefGoogle Scholar
  73. 73.
    Los, J.H., Ghiringhelli, L.M., Meijer, E.J., Fasolino, A.: Improved long-range reactive bond-order potential for carbon I. Construction. Phys. Rev. B 72, 214102 (2005)ADSCrossRefGoogle Scholar
  74. 74.
    Los, J.H., Zakharchenko, K.V., Katsnelson, M.I., Fasolino, A.: Melting temperature of graphene. Phys. Rev. B 91, 045415 (2015)Google Scholar
  75. 75.
    Murzaev, R.T., Bachurin, D.V., Korznikova, E.A., Dmitriev, S.V.: Localized vibrational modes in diamond. Phys. Lett. A 381, 1003–1008 (2017)Google Scholar
  76. 76.
    Murzaev, R.T., Kistanov, A.A., Dubinko, V.I., Terentyev, D.A., Dmitriev, S.V.: Moving discrete breathers in bcc metals V, Fe and W. Comput. Mater. Sci. 98, 88 (2015)CrossRefGoogle Scholar
  77. 77.
    Novoselov, K.S., Fal’ko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490, 192–200 (2012)Google Scholar
  78. 78.
    Podlivaev, A.I., Katin, K.P.: On the dependence of the lifetime of an atomic cluster on the intensity of its heat exchange with the environment. JETP Lett. 92, 52–56 (2010)ADSCrossRefGoogle Scholar
  79. 79.
    Podlivaev, A.I., Katin, K.P., Lobanov, D.A., Openov, L.A.: Specific features of the stone-wales transformation in the C20 and C36 fullerenes. Phys. Solid State 53, 215–220 (2011)Google Scholar
  80. 80.
    Raccichini, R., Varzi, A., Passerini, S., Scrosati, B.: The role of graphene for electrochemical energy storage. Nat. Mater. 14, 271–279 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    Reigada, R., Sarmiento, A., Lindenberg, K.: Energy relaxation in nonlinear one-dimensional lattices. Phys. Rev. E 64, 066608 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    Sato, M., Mukaide, T., Nakaguchi, T., Sievers, A.: Inductive intrinsic localized modes in a one-dimensional nonlinear electric transmission line. Phys. Rev. B 94, 012223 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    Sato, M., Sievers, A.: Experimental and numerical exploration of intrinsic localized modes in an atomic lattice. J. Biol. Phys. 35, 57–72 (2009)CrossRefGoogle Scholar
  84. 84.
    Savin, A.V., Kivshar, Yu.S.: Nonlinear breatherlike localized modes in C60 nanocrystals. Phys. Rev. B 85, 125427 (2012)Google Scholar
  85. 85.
    Savin, A.V., Kivshar, Yu.S: Localized defect modes in graphene. Europhys. Lett. 82, 66002 (2008)Google Scholar
  86. 86.
    Savin, A.V., Kivshar, Yu.S.: Discrete breathers in carbon nanotubes. Phys. Rev. B 88, 125417 (2013)Google Scholar
  87. 87.
    Savin, A.V., Kivshar, Yu.S., Hu, B.: Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B 82, 195422 (2010)Google Scholar
  88. 88.
    Savin, A.V., Korznikova, E.A., Dmitriev, S.V.: Low frequency vibrations of carbon nanoscrolls. Lett. Mater. 6, 77–81 (2016)CrossRefGoogle Scholar
  89. 89.
    Savin, A.V., Manevitch, L.I.: Discrete breathers in a polyethylene chain. Phys. Rev. B 67, 144302 (2003)ADSCrossRefGoogle Scholar
  90. 90.
    Shimada, T., Shirasaki, D., Kinoshita, Y., Doi, Y., Nakatani, A., Kitamura, T.: Influence of nonlinear atomic interaction on excitation of intrinsic localized modes in carbon nanotubes. Phys. D 239, 407–413 (2010)CrossRefzbMATHGoogle Scholar
  91. 91.
    Shimada, T., Shirasaki, D., Kitamura, T.: Stone-Wales transformations triggered by intrinsic localized modes in carbon nanotubes. Phys. Rev. B 81, 035401 (2010)Google Scholar
  92. 92.
    Sievers, A.J., Page, J.B.: Unusual anharmonic local mode systems. In: Horton, G.K., Maradudin, A.A. (eds.) Dynamical Properties of Solids, vol. 7, pp. 137–255. North Holland, Amsterdam (1995)Google Scholar
  93. 93.
    Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)ADSCrossRefGoogle Scholar
  94. 94.
    Terentyev, D.A., Dubinko, A.V., Dubinko, V.I., Dmitriev, S.V., Zhurkin, E.E., Sorokin, M.V.: Interaction of discrete breathers with primary lattice defects in bcc Fe. Model. Simul. Mater. Sci. Eng. 23, 085007 (2015)ADSCrossRefGoogle Scholar
  95. 95.
    Velarde, M.G., Chetverikov, A.P., Ebeling, W., Dmitriev, S.V., Lakhno, V.D.: From solitons to discrete breathers. Eur. Phys. J. B 89, 233 (2016)ADSMathSciNetCrossRefGoogle Scholar
  96. 96.
    Voulgarakis, N.K., Hadjisavvas, G., Kelires, P.C., Tsironis, G.P.: Computational investigation of intrinsic localization in crystalline Si. Phys. Rev. B 69, 113201 (2004)ADSCrossRefGoogle Scholar
  97. 97.
    Xiong, D., Zhang, J.: Discrete breathers: possible effects on heat transport. Lett. Mater. 6, 27–30 (2016)CrossRefGoogle Scholar
  98. 98.
    Yamayose, Y., Kinoshita, Y., Doi, Y., Nakatani, A., Kitamura, T.: Excitation of intrinsic localized modes in a graphene sheet. Europhys. Lett. 80, 40008 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    Zakharchenko, K.V., Fasolino, A., Los, J.H., Katsnelson, M.I.: Melting of graphene: from two to one dimension. J. Phys. Condens. Mat. 23, 202202 (2011)ADSCrossRefGoogle Scholar
  100. 100.
    Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., Ruoff, R.S.: Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Sergey V. Dmitriev
    • 1
    • 2
    Email author
  • Julia A. Baimova
    • 1
    • 3
  • Elena A. Korznikova
    • 1
  • Alexander P. Chetverikov
    • 4
  1. 1.Institute for Metals Superplasticity Problems of RASUfaRussia
  2. 2.National Research Tomsk State UniversityTomskRussia
  3. 3.M.N. Mikheev Institute of Metal Physics of the Ural Branch of RASEkaterinburgRussia
  4. 4.Saratov State UniversitySaratovRussia

Personalised recommendations