Advertisement

Infantile Hemangioma

  • Shoshana Greenberger
Chapter

Abstract

Infantile hemangioma (IH), a benign vascular tumor, is the most common tumor of infancy, with an incidence of 5–10% at the end of the first year. The tumor displays a distinctive life cycle that can be separated into three phases: proliferating, involuting and involuted. Although benign, in 10% of cases IH is complicated and treatment is indicated. In recent years, beta-blockers became the treatment of choice for complicated IH.

The proliferation of IH results from both vasculogenesis; the creation of blood vessels de-novo from stem/progenitor cells, and from angiogenesis; emergence of new blood vessels form from pre-existing vessels. Several cellular components of IH were isolated and characterized, including hemangioma-derived progenitor/stem cells (HemSCs), Hemangioma endothelial cells (HemECs) and perivascular cells (Hem-pericytes).

Female sex has been long recognized as a risk factor for infantile hemangiomas, with a female-to-male ratio ranged from 1.4:1 to 3:1. The etiology for this predominance is still unclear. Possible explanations include sociological factors, such as referral bias due to a greater cosmetic concern when females are affected. In additional biological factors might play a role such as increased sensitivity of IH to the pro-angiogenic activity of estrogen or genetic susceptibility.

Keywords

Infantile hemangioma Female gender Angiogenesis Vasculogenesis Propranolol β adrenergic receptor inhibitors Hemangioma progenitor cells Hemangioma endothelial cells VEGF Estrogen 

References

  1. 1.
    Hoornweg MJ, Smeulders MJ, Ubbink DT, van der Horst CM. The prevalence and risk factors of infantile haemangiomas: a case-control study in the Dutch population. Paediatr Perinat Epidemiol. 2012;26(2):156–62.CrossRefPubMedGoogle Scholar
  2. 2.
    Amir J, Metzker A, Krikler R, Reisner SH. Strawberry hemangioma in preterm infants. Pediatr Dermatol. 1986;3(4):331–2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, et al. Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr. 2007;150(3):291–4.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Enjolras O, Mulliken JB. The current management of vascular birthmarks. Pediatr Dermatol. 1993;10(4):311–3.CrossRefPubMedGoogle Scholar
  5. 5.
    Frieden IJ, Haggstrom AN, Drolet BA, Mancini AJ, Friedlander SF, Boon L, et al. Infantile hemangiomas: current knowledge, future directions. Proceedings of a research workshop on infantile hemangiomas, April 7–9, 2005, Bethesda, MD, USA. Pediatr Dermatol. 2005;22(5):383–406.CrossRefPubMedGoogle Scholar
  6. 6.
    Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, et al. Growth characteristics of infantile hemangiomas: implications for management. Pediatrics. 2008;122(2):360–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Khan ZA, Boscolo E, Picard A, Psutka S, Melero-Martin JM, Bartch TC, et al. Multipotential stem cells recapitulate human infantile hemangioma in immunodeficient mice. J Clin Invest. 2008;118(7):2592–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Boscolo E, Bischoff J. Vasculogenesis in infantile hemangioma. Angiogenesis. 2009;12(2):197–207.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Razon MJ, Kraling BM, Mulliken JB, Bischoff J. Increased apoptosis coincides with onset of involution in infantile hemangioma. Microcirculation. 1998;5(2-3):189–95.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Iwata J, Sonobe H, Furihata M, Ido E, Ohtsuki Y. High frequency of apoptosis in infantile capillary haemangioma. J Pathol. 1996;179(4):403–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Bruckner AL, Frieden IJ. Hemangiomas of infancy. J Am Acad Dermatol. 2003;48(4):477–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Drolet BA, Esterly NB, Frieden IJ. Hemangiomas in children. N Engl J Med. 1999;341(3):173–81.CrossRefPubMedGoogle Scholar
  13. 13.
    Itinteang T, Brasch HD, Tan ST, Day DJ. Expression of components of the renin-angiotensin system in proliferating infantile haemangioma may account for the propranolol-induced accelerated involution. J Plast Reconstr Aesthet Surg. 2011;64(6):759–65.CrossRefPubMedGoogle Scholar
  14. 14.
    Spock CL, Tom LK, Canadas K, Sue GR, Sawh-Martinez R, Maier CL, et al. Infantile hemangiomas exhibit neural crest and pericyte markers. Ann Plast Surg. 2015;74(2):230–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Boye E, Yu Y, Paranya G, Mulliken JB, Olsen BR, Bischoff J. Clonality and altered behavior of endothelial cells from hemangiomas. J Clin Invest. 2001;107(6):745–52.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hopel-Kreiner I. Histogenesis of hemangiomas–an ultrastructural study on capillary and cavernous hemangiomas of the skin. Pathol Res Pract. 1980;170:70.CrossRefGoogle Scholar
  17. 17.
    Greenberger S, Bischoff J. Pathogenesis of infantile haemangioma. Br J Dermatol. 2013;169(1):12–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    North PE, Waner M, Mizeracki A, Mihm MC Jr. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol. 2000;31(1):11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell. 2008;3(3):301–13.CrossRefGoogle Scholar
  20. 20.
    Crisan M, Corselli M, Chen WC, Peault B. Perivascular cells for regenerative medicine. J Cell Mol Med. 2012;16(12):2851–60.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Ribatti D, Nico B, Crivellato E. The role of pericytes in angiogenesis. Int J Dev Biol. 2011;55(3):261–8.CrossRefPubMedGoogle Scholar
  22. 22.
    van Dijk CG, Nieuweboer FE, Pei JY, YJ X, Burgisser P, van Mulligen E, et al. The complex mural cell: pericyte function in health and disease. Int J Cardiol. 2015;190:75–89.CrossRefPubMedGoogle Scholar
  23. 23.
    Kutcher ME, Herman IM. The pericyte: cellular regulator of microvascular blood flow. Microvasc Res. 2009;77(3):235–46.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Boscolo E, Mulliken JB, Bischoff J. Pericytes from infantile hemangioma display proangiogenic properties and dysregulated angiopoietin-1. Arterioscler Thromb Vasc Biol. 2013;33(3):501–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Greenberger S, Boscolo E, Adini I, Mulliken JB, Bischoff J. Corticosteroid suppression of VEGF-A in infantile hemangioma-derived stem cells. N Engl J Med. 2010;362(11):1005–13.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Wang FQ, Chen G, Zhu JY, Zhang W, Ren JG, Liu H, et al. M2-polarised macrophages in infantile haemangiomas: correlation with promoted angiogenesis. J Clin Pathol. 2013;66(12):1058–64.CrossRefPubMedGoogle Scholar
  27. 27.
    Ritter MR, Reinisch J, Friedlander SF, Friedlander M. Myeloid cells in infantile hemangioma. Am J Pathol. 2006;168(2):621–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mills CD. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463–88.CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang W, Chen G, Wang FQ, Ren JG, Zhu JY, Cai Y, et al. Macrophages contribute to the progression of infantile hemangioma by regulating the proliferation and differentiation of hemangioma stem cells. J Invest Dermatol. 2015;135:3163–72.CrossRefPubMedGoogle Scholar
  30. 30.
    Zarem HA, Edgerton MT. Induced resolution of cavernous hemangiomas following prednisolone therapy. Plast Reconstr Surg. 1967;39(1):76–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Cohen SR, Wang CI. Steroid treatment of hemangioma of the head and neck in children. Ann Otol Rhinol Laryngol. 1972;81(4):584–90.CrossRefPubMedGoogle Scholar
  32. 32.
    Leaute-Labreze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo JB, Taieb A. Propranolol for severe hemangiomas of infancy. N Engl J Med. 2008;358(24):2649–51.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Price CJ, Lattouf C, Baum B, McLeod M, Schachner LA, Duarte AM, et al. Propranolol vs corticosteroids for infantile hemangiomas: a multicenter retrospective analysis. Arch Dermatol. 2011;147(12):1371–6.CrossRefPubMedGoogle Scholar
  34. 34.
    Sans V, de la Roque ED, Berge J, Grenier N, Boralevi F, Mazereeuw-Hautier J, et al. Propranolol for severe infantile hemangiomas: follow-up report. Pediatrics. 2009;124(3):e423–31.CrossRefPubMedGoogle Scholar
  35. 35.
    Leaute-Labreze C, Hoeger P, Mazereeuw-Hautier J, Guibaud L, Baselga E, Posiunas G, et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N Engl J Med. 2015;372(8):735–46.CrossRefPubMedGoogle Scholar
  36. 36.
    Hogeling M, Adams S, Wargon O. A randomized controlled trial of propranolol for infantile hemangiomas. Pediatrics. 2011;128(2):e259–66.CrossRefPubMedGoogle Scholar
  37. 37.
    Izadpanah A, Kanevsky J, Belzile E, Schwarz K. Propranolol versus corticosteroids in the treatment of infantile hemangioma: a systematic review and meta-analysis. Plast Reconstr Surg. 2013;131(3):601–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Biesbroeck L, Brandling-Bennett HA. Propranolol for infantile haemangiomas: review of report of a consensus conference. Arch Dis Child Educ Pract Ed. 2014;99(3):95–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Drolet BA, Frommelt PC, Chamlin SL, Haggstrom A, Bauman NM, Chiu YE, et al. Initiation and use of propranolol for infantile hemangioma: report of a consensus conference. Pediatrics. 2013;131(1):128–40.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Horev A, Haim A, Zvulunov A. Propranolol induced hypoglycemia. Pediatr Endocrinol Rev. 2015;12(3):308–10.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Langley A, Pope E. Propranolol and central nervous system function: potential implications for paediatric patients with infantile haemangiomas. Br J Dermatol. 2015;172(1):13–23.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Strange BA, Dolan RJ. Beta-adrenergic modulation of emotional memory-evoked human amygdala and hippocampal responses. Proc Natl Acad Sci U S A. 2004;101(31):11454–8.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lonergan MH, Olivera-Figueroa LA, Pitman RK, Brunet A. Propranolol’s effects on the consolidation and reconsolidation of long-term emotional memory in healthy participants: a meta-analysis. J Psychiatry Neurosci. 2013;38(4):222–31.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Moyakine AV, Spillekom-van Koulil S, van der Vleuten CJM. Propranolol treatment of infantile hemangioma is not associated with psychological problems at 7 years of age. J Am Acad Dermatol. 2017;77(1):105–8.CrossRefPubMedGoogle Scholar
  45. 45.
    Moyakine AV, Hermans DJ, Fuijkschot J, van der Vleuten CJ. Propranolol treatment of infantile hemangiomas does not negatively affect psychomotor development. J Am Acad Dermatol. 2015;73(2):341–2.CrossRefPubMedGoogle Scholar
  46. 46.
    Moyakine AV, Kerstjens JM, Spillekom-van Koulil S, van der Vleuten CJ. Propranolol treatment of infantile hemangioma (IH) is not associated with developmental risk or growth impairment at age 4 years. J Am Acad Dermatol. 2016;75(1):59–63.CrossRefPubMedGoogle Scholar
  47. 47.
    Bayart CB, Tamburro JE, Vidimos AT, Wang L, Golden AB. Atenolol versus propranolol for treatment of infantile hemangiomas during the proliferative phase: a retrospective noninferiority study. Pediatr Dermatol. 2017;34(4):413–21.CrossRefPubMedGoogle Scholar
  48. 48.
    Ji Y, Wang Q, Chen S, Xiang B, Xu Z, Li Y, et al. Oral atenolol therapy for proliferating infantile hemangioma: a prospective study. Medicine (Baltimore). 2016;95(24):e3908.CrossRefGoogle Scholar
  49. 49.
    Abarzua-Araya A, Navarrete-Dechent CP, Heusser F, Retamal J, Zegpi-Trueba MS. Atenolol versus propranolol for the treatment of infantile hemangiomas: a randomized controlled study. J Am Acad Dermatol. 2014;70(6):1045–9.CrossRefPubMedGoogle Scholar
  50. 50.
    Pope E, Chakkittakandiyil A, Lara-Corrales I, Maki E, Weinstein M. Expanding the therapeutic repertoire of infantile haemangiomas: cohort-blinded study of oral nadolol compared with propranolol. Br J Dermatol. 2013;168(1):222–4.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tasani M, Glover M, Martinez AE, Shaw L. Atenolol treatment for infantile haemangioma. Br J Dermatol. 2017;176(5):1400–2.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Madamanchi A. Beta-adrenergic receptor signaling in cardiac function and heart failure. McGill J Med. 2007;10(2):99–104.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Daly CJ, McGrath JC. Previously unsuspected widespread cellular and tissue distribution of beta-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci. 2011;32(4):219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cole SW, Sood AK. Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res. 2012;18(5):1201–6.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Montminy M. Transcriptional regulation by cyclic AMP. Annu Rev Biochem. 1997;66:807–22.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, et al. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci U S A. 2005;102(12):4459–64.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396(6710):474–7.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Young R, Glennon RA. S(−)propranolol as a discriminative stimulus and its comparison to the stimulus effects of cocaine in rats. Psychopharmacology. 2009;203(2):369–82.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Watkins JL, Thaker PH, Nick AM, Ramondetta LM, Kumar S, Urbauer DL, et al. Clinical impact of selective and nonselective beta-blockers on survival in patients with ovarian cancer. Cancer. 2015;121(19):3444–51.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042–52.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939–44.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tang J, Li Z, Lu L, Cho CH. Beta-adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol. 2013;23(6 Pt B):533–42.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rosbe KW, Suh KY, Meyer AK, Maguiness SM, Frieden IJ. Propranolol in the management of airway infantile hemangiomas. Arch Otolaryngol Head Neck Surg. 2010;136(7):658–65.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Nies AS, Evans GH, Shand DG. Regional hemodynamic effects of beta-adrenergic blockade with propranolol in the unanesthetized primate. Am Heart J. 1973;85(1):97–102.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    McSorley PD, Warren DJ. Effects of propranolol and metoprolol on the peripheral circulation. Br Med J. 1978;2(6152):1598–600.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Vandenburg MJ, Conlon C, Ledingham JM. A comparison of the effects of propranolol and oxprenolol on forearm blood flow and skin temperature. Br J Clin Pharmacol. 1981;11(5):485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Doshi BS, Kulkarni RD, Dattani KK, Anand MP. Effect of labetalol and propranolol on human cutaneous vasoconstrictor response to adrenaline. Int J Clin Pharmacol Res. 1984;4(1):25–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Lee D, Boscolo E, Durham JT, Mulliken JB, Herman IM, Bischoff J. Propranolol targets the contractility of infantile haemangioma-derived pericytes. Br J Dermatol. 2014;171(5):1129–37.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kelley C, D’Amore P, Hechtman HB, Shepro D. Vasoactive hormones and cAMP affect pericyte contraction and stress fibres in vitro. J Muscle Res Cell Motil. 1988;9(2):184–94.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Markhotina N, Liu GJ, Martin DK. Contractility of retinal pericytes grown on silicone elastomer substrates is through a protein kinase A-mediated intracellular pathway in response to vasoactive peptides. IET Nanobiotechnol. 2007;1(3):44–51.CrossRefPubMedGoogle Scholar
  71. 71.
    Balligand JL, Cannon PJ. Nitric oxide synthases and cardiac muscle. Autocrine and paracrine influences. Arterioscler Thromb Vasc Biol. 1997;17(10):1846–58.CrossRefPubMedGoogle Scholar
  72. 72.
    McHugh J, Cheek DJ. Nitric oxide and regulation of vascular tone: pharmacological and physiological considerations. Am J Crit Care. 1998;7(2):131–40.PubMedGoogle Scholar
  73. 73.
    Ferro A, Coash M, Yamamoto T, Rob J, Ji Y, Queen L. Nitric oxide-dependent beta2-adrenergic dilatation of rat aorta is mediated through activation of both protein kinase A and Akt. Br J Pharmacol. 2004;143(3):397–403.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Dessy C, Saliez J, Ghisdal P, Daneau G, Lobysheva II, Frerart F, et al. Endothelial beta3-adrenoreceptors mediate nitric oxide-dependent vasorelaxation of coronary microvessels in response to the third-generation beta-blocker nebivolol. Circulation. 2005;112(8):1198–205.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dai Y, Hou F, Buckmiller L, Fan CY, Saad A, Suen J, et al. Decreased eNOS protein expression in involuting and propranolol-treated hemangiomas. Arch Otolaryngol Head Neck Surg. 2012;138(2):177–82.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Yuan WL, Jin ZL, Wei JJ, Liu ZY, Xue L, Wang XK. Propranolol given orally for proliferating infantile haemangiomas: analysis of efficacy and serological changes in vascular endothelial growth factor and endothelial nitric oxide synthase in 35 patients. Br J Oral Maxillofac Surg. 2013;51(7):656–61.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pan WK, Li P, Guo ZT, Huang Q, Gao Y. Propranolol induces regression of hemangioma cells via the down-regulation of the PI3K/Akt/eNOS/VEGF pathway. Pediatr Blood Cancer. 2015;62(8):1414–20.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    McMahon G. VEGF receptor signaling in tumor angiogenesis. Oncologist. 2000;5(Suppl 1):3–10.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest. 1994;93(6):2357–64.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Chang J, Most D, Bresnick S, Mehrara B, Steinbrech DS, Reinisch J, et al. Proliferative hemangiomas: analysis of cytokine gene expression and angiogenesis. Plast Reconstr Surg. 1999;103(1):1–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Kleinman ME, Greives MR, Churgin SS, Blechman KM, Chang EI, Ceradini DJ, et al. Hypoxia-induced mediators of stem/progenitor cell trafficking are increased in children with hemangioma. Arterioscler Thromb Vasc Biol. 2007;27(12):2664–70.CrossRefPubMedGoogle Scholar
  82. 82.
    Fredriksson JM, Lindquist JM, Bronnikov GE, Nedergaard J. Norepinephrine induces vascular endothelial growth factor gene expression in brown adipocytes through a beta -adrenoreceptor/cAMP/protein kinase A pathway involving Src but independently of Erk1/2. J Biol Chem. 2000;275(18):13802–11.CrossRefPubMedGoogle Scholar
  83. 83.
    Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, Jabbari S, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9(12):4514–21.PubMedGoogle Scholar
  84. 84.
    Park SY, Kang JH, Jeong KJ, Lee J, Han JW, Choi WS, et al. Norepinephrine induces VEGF expression and angiogenesis by a hypoxia-inducible factor-1alpha protein-dependent mechanism. Int J Cancer. 2011;128(10):2306–16.CrossRefPubMedGoogle Scholar
  85. 85.
    Guo K, Ma Q, Wang L, Hu H, Li J, Zhang D, et al. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol Rep. 2009;22(4):825–30.PubMedGoogle Scholar
  86. 86.
    Chen XD, Ma G, Huang JL, Chen H, Jin YB, Ye XX, et al. Serum-level changes of vascular endothelial growth factor in children with infantile hemangioma after oral propranolol therapy. Pediatr Dermatol. 2013;30(5):549–53.CrossRefPubMedGoogle Scholar
  87. 87.
    Zhang L, Mai HM, Zheng J, Zheng JW, Wang YA, Qin ZP, et al. Propranolol inhibits angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. Int J Clin Exp Pathol. 2014;7(1):48–55.PubMedGoogle Scholar
  88. 88.
    Ziello JE, Jovin IS, Huang Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80(2):51–60.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Dery MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol. 2005;37(3):535–40.CrossRefPubMedGoogle Scholar
  90. 90.
    Li P, Guo Z, Gao Y, Pan W. Propranolol represses infantile hemangioma cell growth through the beta2-adrenergic receptor in a HIF-1alpha-dependent manner. Oncol Rep. 2015;33(6):3099–107.CrossRefPubMedGoogle Scholar
  91. 91.
    Wong L, Nation RL, Chiou WL, Mehta PK. Plasma concentrations of propranolol and 4-hydroxypropranolol during chronic oral propranolol therapy. Br J Clin Pharmacol. 1979;8(2):163–7.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ji Y, Chen S, Li K, Xiao X, Zheng S, Xu T. The role of beta-adrenergic receptor signaling in the proliferation of hemangioma-derived endothelial cells. Cell Div. 2013;8(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kum JJ, Khan ZA. Propranolol inhibits growth of hemangioma-initiating cells but does not induce apoptosis. Pediatr Res. 2014;75(3):381–8.CrossRefPubMedGoogle Scholar
  94. 94.
    Munabi NC, England RW, Edwards AK, Kitajewski AA, Tan QK, Weinstein A, et al. Propranolol targets hemangioma stem cells via cAMP and mitogen-activated protein kinase regulation. Stem Cells Transl Med. 2016;5(1):45–55.CrossRefPubMedGoogle Scholar
  95. 95.
    Greenberger S, Yuan S, Walsh LA, Boscolo E, Kang KT, Matthews B, et al. Rapamycin suppresses self-renewal and vasculogenic potential of stem cells isolated from infantile hemangioma. J Invest Dermatol. 2011;131(12):2467–76.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bagazgoitia L, Hernandez-Martin A, Torrelo A. Recurrence of infantile hemangiomas treated with propranolol. Pediatr Dermatol. 2011;28(6):658–62.CrossRefPubMedGoogle Scholar
  97. 97.
    Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science. 2010;328(5982):1158–61.CrossRefPubMedGoogle Scholar
  98. 98.
    Li H, Fong C, Chen Y, Cai G, Yang M. Beta2- and beta3-, but not beta1-adrenergic receptors are involved in osteogenesis of mouse mesenchymal stem cells via cAMP/PKA signaling. Arch Biochem Biophys. 2010;496(2):77–83.CrossRefPubMedGoogle Scholar
  99. 99.
    Wong A, Hardy KL, Kitajewski AM, Shawber CJ, Kitajewski JK, Wu JK. Propranolol accelerates adipogenesis in hemangioma stem cells and causes apoptosis of hemangioma endothelial cells. Plast Reconstr Surg. 2012;130(5):1012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    England RW, Hardy KL, Kitajewski AM, Wong A, Kitajewski JK, Shawber CJ, et al. Propranolol promotes accelerated and dysregulated adipogenesis in hemangioma stem cells. Ann Plast Surg. 2014;73(Suppl 1):S119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ma X, Zhao T, Ouyang T, Xin S, Ma Y, Chang M. Propranolol enhanced adipogenesis instead of induction of apoptosis of hemangiomas stem cells. Int J Clin Exp Pathol. 2014;7(7):3809–17.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Finn MC, Glowacki J, Mulliken JB. Congenital vascular lesions: clinical application of a new classification. J Pediatr Surg. 1983;18(6):894–900.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Bree AF, Siegfried E, Sotelo-Avila C, Nahass G. Infantile hemangiomas: speculation on placental trophoblastic origin. Arch Dermatol. 2001;137(5):573–7.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Anderson KR, Schoch JJ, Lohse CM, Hand JL, Davis DM, Tollefson MM. Increasing incidence of infantile hemangiomas (IH) over the past 35 years: correlation with decreasing gestational age at birth and birth weight. J Am Acad Dermatol. 2016;74(1):120–6.CrossRefPubMedGoogle Scholar
  105. 105.
    Williams EF, Iii HM, Rodgers BJ, Brockbank D, Shannon L, et al. A psychological profile of children with hemangiomas and their families. Arch Facial Plast Surg. 2003;5(3):229–34.CrossRefPubMedGoogle Scholar
  106. 106.
    Tanner JL, Dechert MP, Frieden IJ. Growing up with a facial hemangioma: parent and child coping and adaptation. Pediatrics. 1998;101(3):446–52.CrossRefPubMedGoogle Scholar
  107. 107.
    Alniemi ST, Griepentrog GJ, Diehl N, Mohney BG. Incidence and clinical characteristics of periocular infantile hemangiomas. Arch Ophthalmol. 2012;130(7):889–93.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Losordo DW, Isner JM. Estrogen and angiogenesis: a review. Arterioscler Thromb Vasc Biol. 2001;21(1):6–12.CrossRefPubMedGoogle Scholar
  109. 109.
    Johns A, Freay AD, Fraser W, Korach KS, Rubanyi GM. Disruption of estrogen receptor gene prevents 17 beta estradiol-induced angiogenesis in transgenic mice. Endocrinology. 1996;137(10):4511–3.CrossRefGoogle Scholar
  110. 110.
    Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, et al. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation. 1995;91(3):755–63.CrossRefPubMedGoogle Scholar
  111. 111.
    Bausero P, Cavaille F, Meduri G, Freitas S, Perrot-Applanat M. Paracrine action of vascular endothelial growth factor in the human endometrium: production and target sites, and hormonal regulation. Angiogenesis. 1998;2(2):167–82.CrossRefPubMedGoogle Scholar
  112. 112.
    Dabrosin C, Margetts PJ, Gauldie J. Estradiol increases extracellular levels of vascular endothelial growth factor in vivo in murine mammary cancer. Int J Cancer. 2003;107(4):535–40.CrossRefPubMedGoogle Scholar
  113. 113.
    Takei H, Lee ES, Jordan VC. In vitro regulation of vascular endothelial growth factor by estrogens and antiestrogens in estrogen-receptor positive breast cancer. Breast Cancer. 2002;9(1):39–42.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Garvin S, Dabrosin C. Tamoxifen inhibits secretion of vascular endothelial growth factor in breast cancer in vivo. Cancer Res. 2003;63(24):8742–8.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Resanovic I, Rizzo M, Zafirovic S, Bjelogrlic P, Perovic M, Savic K, et al. Anti-atherogenic effects of 17β-estradiol. Horm Metab Res. 2013;45(10):701–8.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Nolan DJ, Ciarrocchi A, Mellick AS, Jaggi JS, Bambino K, Gupta S, et al. Bone marrow-derived endothelial progenitor cells are a major determinant of nascent tumor neovascularization. Genes Dev. 2007;21(12):1546–58.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Suriano R, Chaudhuri D, Johnson RS, Lambers E, Ashok BT, Kishore R, et al. 17β-estradiol mobilizes bone marrow–derived endothelial progenitor cells to tumors. Cancer Res. 2008;68(15):6038–42.CrossRefPubMedGoogle Scholar
  118. 118.
    Baruscotti I, Barchiesi F, Jackson EK, Imthurn B, Stiller R, Kim J-H, et al. Estradiol stimulates capillary formation by human endothelial progenitor cells: role of ER-α/β, heme oxygenase-1 and tyrosine kinase. Hypertension. 2010;56(3):397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Iwakura A, Shastry S, Luedemann C, Hamada H, Kawamoto A, Kishore R, et al. Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow–derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase–mediated activation of matrix metalloproteinase-. Circulation. 2006;113(12):1605–14.CrossRefPubMedGoogle Scholar
  120. 120.
    Sasaki GH, Pang CY, Wittliff JL. Pathogenesis and treatment of infant skin strawberry hemangiomas: clinical and in vitro studies of hormonal effects. Plast Reconstr Surg. 1984;73(3):359–70.CrossRefPubMedGoogle Scholar
  121. 121.
    Liu W, Zhang S, Hu T, Jiang X, Hu X, Feng J. Sex hormone receptor of hemangioma and vascular malformation in children. Zhonghua Wai Ke Za Zhi. 1999;37(5):295–7.PubMedGoogle Scholar
  122. 122.
    Konkle AT, McCarthy MM. Developmental time course of estradiol, testosterone, and dihydrotestosterone levels in discrete regions of male and female rat brain. Endocrinology. 2011;152(1):223–35.CrossRefPubMedGoogle Scholar
  123. 123.
    Grimmer JF, Williams MS, Pimentel R, Mineau G, Wood GM, Bayrak-Toydemir P, et al. Familial clustering of hemangiomas. Arch Otolaryngol Head Neck Surg. 2011;137(8):757–60.CrossRefPubMedGoogle Scholar
  124. 124.
    Walter JW, Blei F, Anderson JL, Orlow SJ, Speer MC, Marchuk DA. Genetic mapping of a novel familial form of infantile hemangioma. Am J Med Genet. 1999;82(1):77–83.CrossRefPubMedGoogle Scholar
  125. 125.
    Walter JW, North PE, Waner M, Mizeracki A, Blei F, Walker JW, et al. Somatic mutation of vascular endothelial growth factor receptors in juvenile hemangioma. Genes Chromosomes Cancer. 2002;33(3):295–303.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of DermatologyPediatric Dermatology Service, Sheba Medical CenterRamat GanIsrael
  2. 2.Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations