Advertisement

Relational Patterns in Cross-Media Information Diffusion Networks

  • Tobias HeckingEmail author
  • Laura Steinert
  • Victor H. Masias
  • H. Ulrich Hoppe
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 689)

Abstract

This paper describes an approach for identifying patterns of information diffusion across different media types on the web. In this context, a novel sampling and crawling strategy for social media content has been applied to extract contributions relevant to certain news events. Contributions can be any kind of published content in different information channels, including tweets (Twitter), web pages, or revisions of Wikipedia articles. Contributions can be interlinked by hyperlinks, revision links, or retweet relationships, and thus constitute a diffusion network with unidirectional links indicating influence. Our approach reduces the original possibly very large and complex diffusion network to its basic underlying structure by applying non-negative matrix factorization to group the nodes with similar positions in the diffusion network. Beyond focusing only on the spread of a news item through different channels, also the temporal aspect, especially delay, is explicitly taken into account.

References

  1. 1.
    Adar, E., Adamic, L.A.: Tracking information epidemics in blogspace. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 207–214. IEEE Computer Society (2005)Google Scholar
  2. 2.
    Agarwal, N., Kumar, S., Gao, H., Zafarani, R., Liu, H.: Analyzing behavior of the influentials across social media. In: Behavior Computing, pp. 3–19. Springer Nature (2012)Google Scholar
  3. 3.
    Aiello, L.M., Petkos, G., Martin, C., Corney, D., Papadopoulos, S., Skraba, R., Gker, A., Kompatsiaris, I., Jaimes, A.: Sensing trending topics in twitter. IEEE Trans. Multimedia 15(6), 1268–1282 (2013)CrossRefGoogle Scholar
  4. 4.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp. 519–528. ACM (2012)Google Scholar
  5. 5.
    Boutsidis, C., Gallopoulos, E.: Svd based initialization: a head start for nonnegative matrix factorization. Pattern Recogn. 41(4), 1350–1362 (2008)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cao, C., Caverlee, J., Lee, K., Ge, H., Chung, J.: Organic or organized? exploring url sharing behavior. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management, pp. 513–522 (2015)Google Scholar
  7. 7.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence in twitter: the million follower fallacy. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media (2010)Google Scholar
  8. 8.
    Doreian, P., Batagelj, V., Ferligoj, A., Granovetter, M.: Generalized Blockmodeling (Structural Analysis in the Social Sciences). Cambridge University Press, New York, NY, USA (2004)CrossRefGoogle Scholar
  9. 9.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gomez-Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. ACM TKDD 5(4), 21:1–21:37 (2012)Google Scholar
  11. 11.
    Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. ACM SIGMOD Record 42(2), 17–28 (2013)CrossRefGoogle Scholar
  12. 12.
    Hecking, T., Steinert, L., Leßmann, S., Masias, V., Hoppe, H.U.: Identifying accelerators of information diffusion across social media channels. In: Proceedings of the 4th European Network Intelligence Conference (ENIC’17). Springer (to be published)Google Scholar
  13. 13.
    Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: Proceedings of the First Workshop on Social Media Analytics, pp. 80–88. ACM (2010)Google Scholar
  14. 14.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRefzbMATHGoogle Scholar
  15. 15.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, pp. 137–146. ACM (2013)Google Scholar
  16. 16.
    Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)CrossRefzbMATHGoogle Scholar
  17. 17.
    Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2011)Google Scholar
  18. 18.
    Leskovec, J., Backstrom, L., Kleinberg, J.: Meme-tracking and the dynamics of the news cycle. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 497–506. ACM (2009)Google Scholar
  19. 19.
    Toriumi, F., Sakaki, T., Shinoda, K., Kazama, K., Kurihara, S., Noda, I.: Information sharing on twitter during the 2011 catastrophic earthquake. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1025–1028. ACM (2013)Google Scholar
  20. 20.
    Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of ideas in microblogging communities. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, pp. 643–652. ACM (2012)Google Scholar
  21. 21.
    White, D.R., Reitz, K.P.: Graph and semigroup homomorphisms on networks of relations. Soc. Netw. 5(2), 193–234 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Yu, K., Yu, S., Tresp, V.: Soft clustering on graphs. In: Proceedings of the 18th International Conference on Neural Information Processing Systems, NIPS’05, pp. 1553–1560. MIT Press, Cambridge, MA, USA (2005)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Tobias Hecking
    • 1
    Email author
  • Laura Steinert
    • 1
  • Victor H. Masias
    • 1
  • H. Ulrich Hoppe
    • 1
  1. 1.University of Duisburg-EssenDuisburgGermany

Personalised recommendations