Advertisement

Simultaneous Matrix Diagonalization for Structural Brain Networks Classification

  • Nikita Mokrov
  • Maxim PanovEmail author
  • Boris A. Gutman
  • Joshua I. Faskowitz
  • Neda Jahanshad
  • Paul M. Thompson
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 689)

Abstract

This paper considers the problem of brain disease classification based on connectome data. A connectome is a network representation of a human brain. The typical connectome classification problem is very challenging because of the small sample size and high dimensionality of the data. We propose to use simultaneous approximate diagonalization of adjacency matrices in order to compute their eigenstructures in more stable way. The obtained approximate eigenvalues are further used as features for classification. The proposed approach is demonstrated to be efficient for detection of Alzheimer’s disease, outperforming simple baselines and competing with state-of-the-art approaches to brain disease classification.

Notes

Acknowledgements

The research was supported by the Russian Science Foundation grant (project 14-50-00150). Some data used in preparing this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. A complete listing of ADNI investigators and imaging protocols can be found at adni.loni.usc.edu.

References

  1. 1.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Brown, J., Rudie, J., Bandrowski, A., Horn, J.V., Bookheimer, S.: The ucla multimodal connectivity database: a web-based platform for brain connectivity matrix sharing and analysis. Front. Neuroinf. 6, 28 (2012)Google Scholar
  3. 3.
    Brown, J., Terashima, K., Burggren, A.: Brain network local interconnectivity loss in aging apoe-4 allele carriers. PNAS 108(51), 20,760–20,765 (2011)Google Scholar
  4. 4.
    Cardoso, J.F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM J. Matrix Anal. Appl. 17(1), 161–164 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)Google Scholar
  6. 6.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)zbMATHGoogle Scholar
  7. 7.
    Crofts, J.J., Higham, D.J.: A weighted communicability measure applied to complex brain networks. J. R. Soc. Interface, rsif–2008 (2009)Google Scholar
  8. 8.
    Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage 31(3), 968–980 (2006)CrossRefGoogle Scholar
  9. 9.
    Dodonova, Y., Korolev, S., Tkachev, A., Petrov, D., Zhukov, L., Belyaev, M.: Classification of structural brain networks based on information divergence of graph spectra. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)Google Scholar
  10. 10.
    Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)CrossRefGoogle Scholar
  11. 11.
    Florkowski, C.M.: Sensitivity, specificity, receiver-operating characteristic (roc) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin. Biochem. Rev. 29(Suppl 1), S83 (2008)Google Scholar
  12. 12.
    Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat., 1189–1232 (2001)Google Scholar
  13. 13.
    Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I., Contributors, D.: Dipy, a library for the analysis of diffusion mri data. Front. Neuroinf. 8 (2014)Google Scholar
  14. 14.
    Hagmann, P.: From diffusion mri to brain connectomics. EPFL, 127 (2005)Google Scholar
  15. 15.
    Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 376–383. ACM (2008)Google Scholar
  16. 16.
    Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, New York (2013)Google Scholar
  17. 17.
    Kurkumov, A., Dodonova, Y., Zhukov, L.: Machine learning application to human brain network studies: A kernel approach. Models Algorithms Technol. Netw. Anal. NET 2016, 15–17 (2016)Google Scholar
  18. 18.
    Kurmukov, A., Ananyeva, M., Dodonova, Y., Gutman, B., Faskowitz, J., Jahanshad, N., Thompson, P., Zhukov, L.: Classifying Phenotypes Based on the Community Structure of Human Brain Networks, pp. 3–11. Springer International Publishing, Cham (2017)Google Scholar
  19. 19.
    Kurmukov, A., Dodonova, Y., Zhukov, L.: Classification of normal and pathological brain networks based on similarity in graph partitions. In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), pp. 107–112. IEEE (2016)Google Scholar
  20. 20.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Petrov, D., Dodonova, Y., Zhukov, L., Belyaev, M.: Boosting connectome classification via combination of geometric and topological normalizations. In: IEEE 6th International Workshop on Pattern Recognition in Neuroimaging (PRNI 2016), p. 4 (2016)Google Scholar
  22. 22.
    Rohde, A., Tsybakov, A.: Estimation of high-dimensional low-rank matrices. Ann. Stat. 39(2), 887–930 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rudie, J., Brown, J., Beck-Pancer, D., Hernandez, L., Dennis, E., Thompson, P.: Altered functional and structural brain network organization in autism. Neuroimage Clin 2, 79–94 (2013)CrossRefGoogle Scholar
  24. 24.
    Sporns, O., Tononi, P., Ktter, R.: The human connectome: A structural description of the human brain. PLoS Comput. Biol. (2005)Google Scholar
  25. 25.
    Tax, C.M., Jeurissen, B., Vos, S.B., Viergever, M.A., Leemans, A.: Recursive calibration of the fiber response function for spherical deconvolution of diffusion mri data. Neuroimage 86, 67–80 (2014)CrossRefGoogle Scholar
  26. 26.
    Tichavsky, P., Yeredor, A.: Fast approximate joint diagonalization incorporating weight matrices. IEEE Trans. Signal Process. 57(3), 878–891 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation. IEEE Trans. Signal Process. 50(7), 1545–1553 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zhan, L., Liu, Y., Wang, Y., Zhou, J., Jahanshad, N., Ye, J., Thompson, P.: Boosting brain connectome classification accuracy in alzheimer’s disease using higher-order singular value decomposition. Front. Neurosci. 9, 257.  https://doi.org/10.3389/fnins.2015.00257 (2015)
  29. 29.
    Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. Roy. Stat. Soc. B (Stat. Methodol.) 67(2), 301–320 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nikita Mokrov
    • 1
  • Maxim Panov
    • 2
    Email author
  • Boris A. Gutman
    • 3
  • Joshua I. Faskowitz
    • 3
  • Neda Jahanshad
    • 3
  • Paul M. Thompson
    • 3
  1. 1.Moscow Institute of Physics and TechnologyInstitute for Information Transmission Problems of RASMoscowRussia
  2. 2.Skolkovo Institute of Science and Technology (Skoltech)Institute for Information Transmission Problems of RASMoscowRussia
  3. 3.Imaging Genetics Center, Stevens Neuroimaging and Informatics InstituteUniversity of Southern CaliforniaMarina del ReyUSA

Personalised recommendations