Towards Distributed and Context-Aware Human-Centric Cyber-Physical Systems

  • Jose Garcia-AlonsoEmail author
  • Javier Berrocal
  • Carlos Canal
  • Juan M. Murillo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 707)


As the number of devices connected to the Internet increases, the interactions between the general population and Cyber-Physical Systems multiplies. Most of these interactions occur through people’s smart devices. Thanks to the large number of sensor included on these devices and their capabilities to connect to other sensors they serve as a gateway to Cyber-Physical Systems. However, most of the capabilities of these devices are underutilized, since they are only used to upload the sensed information to centralized cloud servers. This paper presents the key challenges that must be faced to build distributed and context-aware human-centric Cyber-Physical Systems that take advantage of the capabilities of modern smart devices. In addition, the concept of Situational-Context is introduced as a possible solution addressing these challenges. Situational-Context is a new computational model that use smart devices to gather the virtual profiles of their owners. These profiles are combined and used to adapt and control the behaviour of Cyber-Physical Systems. This computational model could contribute to a new generation of distribute human-centric systems with a clear social orientation.


Cyber-Physical Systems Human-centric Cyber-Physical Systems Internet of Things Mobile computing Situational-Context 



This work was partially supported by the Spanish Ministry of Science and Innovation (projects TIN2014-53986-REDT, TIN2015-67083-R and TIN2015-69957-R), by the Department of Economy and Infrastructure of the Government of Extremadura (GR15098), and by the European Regional Development Fund.


  1. 1.
    nimBees Platform.
  2. 2.
    Berrocal, J., Garcia-Alonso, J., Murillo, J., Canal, C.: Rich contextual information for monitoring the elderly in an early stage of cognitive impairment. Pervasive Mob. Comput. (2016)Google Scholar
  3. 3.
    Berrocal, J., Garcia-Alonso, J., Vicente-Chicote, C., Hernandez, J., Mikkonen, T., Canal, C., Murillo, J.: Early analysis of resource consumption patterns in mobile applications. Pervasive Mob. Comput. (2016)Google Scholar
  4. 4.
    Berrocal, J., Garcia-Alonso, J., Canal, C., Murillo, J.M.: Situational-context: a unified view of everything involved at a particular situation. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 476–483. Springer, Cham (2016). Google Scholar
  5. 5.
    Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (MCC 2012), pp. 13–16. ACM, New York (2012)Google Scholar
  6. 6.
    Bradley, J.M., Atkins, E.M.: Optimization and control of cyber-physical vehicle systems. Sensors 15(9), 23020–23049 (2015)CrossRefGoogle Scholar
  7. 7.
    Chen, N., Xiao, C., Pu, F., Wang, X., Wang, C., Wang, Z., Gong, J.: Cyber-physical geographical information service-enabled control of diverse in-situ sensors. Sensors 15(2), 2565–2592 (2015)CrossRefGoogle Scholar
  8. 8.
    Frank, R., Mouton, M., Engel, T.: Towards collaborative traffic sensing using mobile phones (poster). In: 2012 IEEE Vehicular Networking Conference (VNC), pp. 115–120, November 2012Google Scholar
  9. 9.
    Frazzon, E.M., Hartmann, J., Makuschewitz, T., Scholz-Reiter, B.: Towards socio-cyber-physical systems in production networks. In: Forty Sixth CIRP Conference on Manufacturing Systems, vol. 7, pp. 49–54 (2013)Google Scholar
  10. 10.
    Guillen, J., Miranda, J., Berrocal, J., Garcia-Alonso, J., Murillo, J., Canal, C.: People as a service: a mobile-centric model for providing collective sociological profiles. Softw. IEEE 31(2), 48–53 (2014)CrossRefGoogle Scholar
  11. 11.
    Hancke, G., Markantonakis, K., Mayes, K.: Security challenges for user-oriented RFID applications within the “internet of things”. J. Internet Technol. 11(3), 307 (2010)Google Scholar
  12. 12.
    Hu, X., Chu, T., Chan, H., Leung, V.: Vita: a crowdsensing-oriented mobile cyber-physical system. IEEE Trans. Emerg. Top. Comput. 1(1), 148–165 (2013)CrossRefGoogle Scholar
  13. 13.
    Jansen, M.: Evaluation of an architecture for providing mobile web services. Int. J. Adv. Internet Technol. 6(1), 32–41 (2013)Google Scholar
  14. 14.
    Kazakov, Y., Klinov, P.: Experimenting with ELK reasoner on android. In: Bail, S., Glimm, B., Gonçalves, R.S., Jiménez-Ruiz, E., Kazakov, Y., Matentzoglu, N., Parsia, B. (eds.) CEUR Workshop Proceedings, vol. 1015, pp. 68–74 (2013)Google Scholar
  15. 15.
    Kim, K.D., Kumar, P.: Cyber-physical systems: a perspective at the centennial. Proc. IEEE 100(Special Centennial Issue), 1287–1308 (2012)CrossRefGoogle Scholar
  16. 16.
    Kobsa, A.: Privacy-enhanced personalization. In: Tsihrintzis, G., Virvou, M., Howlett, R., Jain, L. (eds.) New Directions in Intelligent Interactive Multimedia. Studies in Computational Intelligence, vol. 142, p. 31. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  17. 17.
    Lee, E.A.: The past, present and future of cyber-physical systems: a focus on models. Sensors 15(3), 4837–4869 (2015)CrossRefGoogle Scholar
  18. 18.
    Lee, J., Lapira, E., Bagheri, B., Kao, H.A.: Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 1(1), 38–41 (2013). CrossRefGoogle Scholar
  19. 19.
    Lee, Y., Min, C., Ju, Y., Kang, S., Rhee, Y., Song, J.: An active resource orchestration framework for pan-scale, sensor-rich environments. IEEE Trans. Mob. Comput. 13(3), 596–610 (2014)CrossRefGoogle Scholar
  20. 20.
    Li, T., Cao, J., Liang, J., Zheng, J.: Towards context-aware medical cyber-physical systems: design methodology and a case study. Cyber Phys. Syst. 1–19 (2014)Google Scholar
  21. 21.
    Mäkitalo, N., Pääkkö, J., Raatikainen, M., Myllärniemi, V., Aaltonen, T., Leppänen, T., Männistö, T., Mikkonen, T.: Social devices: collaborative co-located interactions in a mobile cloud. In: Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia (MUM 2012), pp. 10:1–10:10. ACM, New York (2012).
  22. 22.
    Merlo, A., Migliardi, M., Caviglione, L.: A survey on energy-aware security mechanisms. Pervasive Mob. Comput. 24, 77–90 (2015). Special Issue on Secure Ubiquitous ComputingCrossRefGoogle Scholar
  23. 23.
    Meseguer, R., Molina, C., Ochoa, S., Santos, R.: Reducing energy consumption in human-centric wireless sensor networks. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1473–1478, October 2012Google Scholar
  24. 24.
    Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., Murillo, J.: From the internet of things to the internet of people. IEEE Internet Comput. 19(2), 40–47 (2015)CrossRefGoogle Scholar
  25. 25.
    Ning, H., Liu, H.: Advances in intrusion detection system for WLAN. Adv. Internet Things 1(3), 51–54 (2011)CrossRefGoogle Scholar
  26. 26.
    Ning, H., Liu, H.: Cyber-physical-social based security architecture for future internet of things. Adv. Internet Things 2(1), 1–7 (2012)CrossRefGoogle Scholar
  27. 27.
    Perera, C., Zaslavsky, A.B., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. J. 16(1), 414–454 (2013)CrossRefGoogle Scholar
  28. 28.
    Plödereder, E., Grunske, L., Schneider, E., Ull, D. (eds.): 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014, Big Data - Komplexität meistern, 22–26 September 2014 in Stuttgart, Deutschland. LNI, vol. 232. GI (2014)Google Scholar
  29. 29.
    Raatikainen, M., Mikkonen, T., Myllärniemi, V., Mäkitalo, N., Männistö, T., Savolainen, J.: Mobile content as a service a blueprint for a vendor-neutral cloud of mobile devices. Softw. IEEE 29(4), 28–32 (2012)CrossRefGoogle Scholar
  30. 30.
    Roman, R., Alcaraz, C., Lopez, J., Sklavos, N.: Key management systems for sensor networks in the context of the internet of things. Comput. Electr. Eng. 37(2), 147–159 (2011)CrossRefGoogle Scholar
  31. 31.
    Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)CrossRefGoogle Scholar
  32. 32.
    Seiger, R., Keller, C., Niebling, F., Schlegel, T.: Modelling complex and flexible processes for smart cyber-physical environments. J. Comput. Sci. (2014)Google Scholar
  33. 33.
    Sharma, A.B., Ivančić, F., Niculescu-Mizil, A., Chen, H., Jiang, G.: Modeling and analytics for cyber-physical systems in the age of big data. SIGMETRICS Perform. Eval. Rev. 41(4), 74–77 (2014). CrossRefGoogle Scholar
  34. 34.
    Sánchez-Escribano, M., Sanz, R.: Emotions and the engineering of adaptiveness in complex systems. Procedia Comput. Sci. 28, 473–480 (2014). 2014 Conference on Systems Engineering ResearchCrossRefGoogle Scholar
  35. 35.
    Sorici, A., Picard, G., Boissier, O., Florea, A.: Multi-agent based flexible deployment of context management in ambient intelligence applications. In: Demazeau, Y., Decker, K.S., Bajo Pérez, J., de la Prieta, F. (eds.) PAAMS 2015. LNCS (LNAI), vol. 9086, pp. 225–239. Springer, Cham (2015). CrossRefGoogle Scholar
  36. 36.
    Wan, J., Zhang, D., Zhao, S., Yang, L., Lloret, J.: Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. Commun. Mag. IEEE 52(8), 106–113 (2014)CrossRefGoogle Scholar
  37. 37.
    Wieland, M., Kaczmarczyk, P., Nicklas, D.: Context integration for smart workflows. In: Sixth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom 2008), pp. 239–242, March 2008Google Scholar
  38. 38.
    Wilke, C., Richly, S., Gotz, S., Piechnick, C., Assmann, U.: Energy consumption and efficiency in mobile applications: a user feedback study. In: 2013 IEEE International Conference on Green Computing and Communications (GreenCom), and IEEE Internet of Things (iThings), and IEEE Cyber, Physical and Social Computing (CPSCom), pp. 134–141 (2013)Google Scholar
  39. 39.
    Work, D., Bayen, A., Jacobson, Q.: Automotive cyber physical systems in the context of human mobility. In: Proceedings of the National Workshop on High-Confidence Automotive Cyber-Physical Systems, Troy (2008)Google Scholar
  40. 40.
    Yus, R., Bobed, C., Esteban, G., Bobillo, F., Mena, E.: Android goes semantic: Dl reasoners on smartphones. In: Bail, S., Glimm, B., Gonçalves, R.S., Jiménez-Ruiz, E., Kazakov, Y., Matentzoglu, N., Parsia, B. (eds.) CEUR Workshop Proceedings, vol. 1015, pp. 46–52 (2013)Google Scholar
  41. 41.
    Zhang, Y., Chen, M., Mao, S., Hu, L., Leung, V.: CAP: community activity prediction based on big data analysis. Netw. IEEE 28(4), 52–57 (2014)CrossRefGoogle Scholar
  42. 42.
    Zhuge, H.: Semantic linking through spaces for cyber-physical-socio intelligence: a methodology. Artif. Intell. 175(5–6), 988–1019 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jose Garcia-Alonso
    • 1
    Email author
  • Javier Berrocal
    • 1
  • Carlos Canal
    • 2
  • Juan M. Murillo
    • 1
  1. 1.University of ExtremaduraBadajozSpain
  2. 2.University of MálagaMálagaSpain

Personalised recommendations