Advertisement

The Role of TSH Suppression in the Management of Differentiated Thyroid Cancer

  • Rami Alrezk
  • Joanna Klubo-Gwiezdzinska
Chapter

Abstract

TSH suppression is a therapeutic modality with a pivotal role in the long-term management of intermediate- and high-risk patients with differentiated thyroid cancer. However, therapy with suppressive doses of levothyroxine is associated with increased cardiovascular risk, especially in older patients, and negatively affects bone health, particularly in postmenopausal women. Therefore, this chapter describes the risks and benefits of TSH suppression in thyroid cancer and, as such, forms a basis for the individualized patient-tailored approach to the therapy with levothyroxine. This review summarizes different guidelines implemented in the United States, Europe, Latin America, and Japan focused on the role of long-term TSH suppression and its association with mortality and recurrence rate among thyroid cancer patients.

Keywords

TSH Suppression Side effects Thyroid cancer 

References

  1. 1.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Dunhill TP. Surgery of the thyroid gland. Br Med J. 1937;1(3973):460–1.Google Scholar
  3. 3.
    Balme HW. Metastatic carcinoma of the thyroid successfully treated with thyroxine. Lancet. 1954;266(6816):812–3.PubMedGoogle Scholar
  4. 4.
    Tanaka K, Inoue H, Miki H, Masuda E, Kitaichi M, Komaki K, et al. Relationship between prognostic score and thyrotropin receptor (TSH-R) in papillary thyroid carcinoma: immunohistochemical detection of TSH-R. Br J Cancer. 1997;76(5):594–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wang ZF, Liu QJ, Liao SQ, Yang R, Ge T, He X, et al. Expression and correlation of sodium/iodide symporter and thyroid stimulating hormone receptor in human thyroid carcinoma. Tumori. 2011;97(4):540–6.PubMedGoogle Scholar
  6. 6.
    Matsumoto H, Sakamoto A, Fujiwara M, Yano Y, Shishido-Hara Y, Fujioka Y, et al. Decreased expression of the thyroid-stimulating hormone receptor in poorly-differentiated carcinoma of the thyroid. Oncol Rep. 2008;19(6):1405–11.PubMedGoogle Scholar
  7. 7.
    Lin JD, Fu SS, Chen JY, Lee CH, Chau WK, Cheng CW, et al. Clinical manifestations and gene expression in patients with conventional papillary thyroid carcinoma carrying the BRAF(V600E) mutation and BRAF pseudogene. Thyroid. 2016;26(5):691–704.PubMedGoogle Scholar
  8. 8.
    Gerard AC, Daumerie C, Mestdagh C, Gohy S, De Burbure C, Costagliola S, et al. Correlation between the loss of thyroglobulin iodination and the expression of thyroid-specific proteins involved in iodine metabolism in thyroid carcinomas. J Clin Endocrinol Metab. 2003;88(10):4977–83.PubMedGoogle Scholar
  9. 9.
    Liu TR, Su X, Qiu WS, Chen WC, Men QQ, Zou L, et al. Thyroid-stimulating hormone receptor affects metastasis and prognosis in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2016;20(17):3582–91.PubMedGoogle Scholar
  10. 10.
    So YK, Son YI, Baek CH, Jeong HS, Chung MK, Ko YH. Expression of sodium-iodide symporter and TSH receptor in subclinical metastatic lymph nodes of papillary thyroid microcarcinoma. Ann Surg Oncol. 2012;19(3):990–5.PubMedGoogle Scholar
  11. 11.
    Rowe CW, Paul JW, Gedye C, Tolosa JM, Bendinelli C, McGrath S, et al. Targeting the TSH receptor in thyroid cancer. Endocr Relat Cancer. 2017;24(6):R191–r202.PubMedGoogle Scholar
  12. 12.
    Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab. 2007;92(7):2840–3.Google Scholar
  13. 13.
    Hoffmann S, Maschuw K, Hassan I, Wunderlich A, Lingelbach S, Ramaswamy A, et al. Functional thyrotropin receptor attenuates malignant phenotype of follicular thyroid cancer cells. Endocrine. 2006;30(1):129–38.PubMedGoogle Scholar
  14. 14.
    van Staveren WC, Solis DW, Delys L, Duprez L, Andry G, Franc B, et al. Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype. Cancer Res. 2007;67(17):8113–20.PubMedGoogle Scholar
  15. 15.
    Hoelting T, Goretzki PE, Duh QY. Follicular thyroid cancer cells: a model of metastatic tumor in vitro (review). Oncol Rep. 2001;8(1):3–8.PubMedGoogle Scholar
  16. 16.
    Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev. 2001;22(5):631–56.PubMedGoogle Scholar
  17. 17.
    Chaimoff M, Raiter A, Avidan S, Shpitzer T, Feinmesser R, Hardy B. Effect of exogenous thyroid-stimulating hormone on thyroid papillary carcinoma cells in tissue culture. Head Neck. 2001;23(6):479–83.PubMedGoogle Scholar
  18. 18.
    Lu C, Zhao L, Ying H, Willingham MC, Cheng SY. Growth activation alone is not sufficient to cause metastatic thyroid cancer in a mouse model of follicular thyroid carcinoma. Endocrinology. 2010;151(4):1929–39.PubMedPubMedCentralGoogle Scholar
  19. 19.
    McGriff NJ, Csako G, Gourgiotis L, Lori CG, Pucino F, Sarlis NJ. Effects of thyroid hormone suppression therapy on adverse clinical outcomes in thyroid cancer. Ann Med. 2002;34(7–8):554–64.PubMedGoogle Scholar
  20. 20.
    Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97(5):418–28.PubMedGoogle Scholar
  21. 21.
    Pujol P, Daures JP, Nsakala N, Baldet L, Bringer J, Jaffiol C. Degree of thyrotropin suppression as a prognostic determinant in differentiated thyroid cancer. J Clin Endocrinol Metab. 1996;81(12):4318–23.PubMedGoogle Scholar
  22. 22.
    Cooper DS, Specker B, Ho M, Sperling M, Ladenson PW, Ross DS, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid. 1998;8(9):737–44.PubMedGoogle Scholar
  23. 23.
    Crile G Jr. Changing end results in patients with papillary carcinoma of the thyroid. Surg Gynecol Obstet. 1971;132(3):460–8.PubMedGoogle Scholar
  24. 24.
    Young RL, Mazzaferri EL, Rahe AJ, Dorfman SG. Pure follicular thyroid carcinoma: impact of therapy in 214 patients. J Nucl Med. 1980;21(8):733–7.PubMedGoogle Scholar
  25. 25.
    Wanebo HJ, Andrews W, Kaiser DL. Thyroid cancer: some basic considerations. Am J Surg. 1981;142(4):474–9.PubMedGoogle Scholar
  26. 26.
    Cady B, Cohn K, Rossi RL, Sedgwick CE, Meissner WA, Werber J, et al. The effect of thyroid hormone administration upon survival in patients with differentiated thyroid carcinoma. Surgery. 1983;94(6):978–83.PubMedGoogle Scholar
  27. 27.
    Rossi RL, Cady B, Silverman ML, Wool MS, ReMine SG, Hodge MB, et al. Surgically incurable well-differentiated thyroid carcinoma. Prognostic factors and results of therapy. Arch Surg. 1988;123(5):569–74.PubMedGoogle Scholar
  28. 28.
    Sanders LE, Rossi RL. Occult well differentiated thyroid carcinoma presenting as cervical node disease. World J Surg. 1995;19(4):642–6. discussion 6-7.PubMedGoogle Scholar
  29. 29.
    Esik O, Tusnady G, Daubner K, Nemeth G, Fuzy M, Szentirmay Z. Survival chance in papillary thyroid cancer in Hungary: individual survival probability estimation using the Markov method. Radiother Oncol. 1997;44(3):203–12.PubMedGoogle Scholar
  30. 30.
    Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16(12):1229–42.PubMedGoogle Scholar
  31. 31.
    Biondi B, Cooper DS. Benefits of thyrotropin suppression versus the risks of adverse effects in differentiated thyroid cancer. Thyroid. 2010;20(2):135–46.PubMedGoogle Scholar
  32. 32.
    Sugitani I, Fujimoto Y. Does postoperative thyrotropin suppression therapy truly decrease recurrence in papillary thyroid carcinoma? A randomized controlled trial. J Clin Endocrinol Metab. 2010;95(10):4576–83.PubMedGoogle Scholar
  33. 33.
    Hovens GC, Stokkel MP, Kievit J, Corssmit EP, Pereira AM, Romijn JA, et al. Associations of serum thyrotropin concentrations with recurrence and death in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92(7):2610–5.PubMedGoogle Scholar
  34. 34.
    Ebina A, Sugitani I, Fujimoto Y, Yamada K. Risk-adapted management of papillary thyroid carcinoma according to our own risk group classification system: is thyroid lobectomy the treatment of choice for low-risk patients? Surgery. 2014;156(6):1579–88. discussion 88-9.PubMedGoogle Scholar
  35. 35.
    Carhill AA, Litofsky DR, Ross DS, Jonklaas J, Cooper DS, Brierley JD, et al. Long-term outcomes following therapy in differentiated thyroid carcinoma: NTCTCS registry analysis 1987-2012. J Clin Endocrinol Metab. 2015;100(9):3270–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Park S, Kim WG, Han M, Jeon MJ, Kwon H, Kim M, et al. Thyrotropin suppressive therapy for low-risk small thyroid Cancer: a propensity score-matched cohort study. Thyroid. 2017;27(9):1164–70.PubMedGoogle Scholar
  37. 37.
    Diessl S, Holzberger B, Mader U, Grelle I, Smit JW, Buck AK, et al. Impact of moderate vs stringent TSH suppression on survival in advanced differentiated thyroid carcinoma. Clin Endocrinol. 2012;76(4):586–92.Google Scholar
  38. 38.
    Klubo-Gwiezdzinska J, Auh S, Skarulis MC, Gershengorn MC, Bikas A, Burman K, Wartofsky L, Urken M, Dewey E, Michael Tuttle R, Smallridge RC, Chindris AM, Bickford C, Rauscher E, Kebebew E. Thyroid Stimulating Hormone (TSH) Suppression Is Not Associated with Better Outcomes in Intermediate and High Risk Thyroid Cancer Patients. Endocr Rev. 2016;37(2 Supplement).Google Scholar
  39. 39.
    Iervasi G, Molinaro S, Landi P, Taddei MC, Galli E, Mariani F, et al. Association between increased mortality and mild thyroid dysfunction in cardiac patients. Arch Intern Med. 2007;167(14):1526–32.PubMedGoogle Scholar
  40. 40.
    Collet TH, Gussekloo J, Bauer DC, den Elzen WP, Cappola AR, Balmer P, et al. Subclinical hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med. 2012;172(10):799–809.Google Scholar
  41. 41.
    Haentjens P, Van Meerhaeghe A, Poppe K, Velkeniers B. Subclinical thyroid dysfunction and mortality: an estimate of relative and absolute excess all-cause mortality based on time-to-event data from cohort studies. Eur J Endocrinol. 2008;159(3):329–41.PubMedGoogle Scholar
  42. 42.
    Parle JV, Maisonneuve P, Sheppard MC, Boyle P, Franklyn JA. Prediction of all-cause and cardiovascular mortality in elderly people from one low serum thyrotropin result: a 10-year cohort study. Lancet. 2001;358(9285):861–5.PubMedGoogle Scholar
  43. 43.
    Laulund AS, Nybo M, Brix TH, Abrahamsen B, Jorgensen HL, Hegedus L. Duration of thyroid dysfunction correlates with all-cause mortality. The OPENTHYRO register cohort. PLoS One. 2014;9(10):e110437.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Klein Hesselink EN, Klein Hesselink MS, de Bock GH, Gansevoort RT, Bakker SJ, Vredeveld EJ, et al. Long-term cardiovascular mortality in patients with differentiated thyroid carcinoma: an observational study. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(32):4046–53.Google Scholar
  45. 45.
    Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frolich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292(21):2591–9.Google Scholar
  46. 46.
    Klein Hesselink EN, Lefrandt JD, Schuurmans EP, Burgerhof JG, Groen B, Gansevoort RT, et al. Increased risk of atrial fibrillation after treatment for differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2015;100(12):4563–9.PubMedGoogle Scholar
  47. 47.
    Flynn RW, Bonellie SR, Jung RT, MacDonald TM, Morris AD, Leese GP. Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J Clin Endocrinol Metab. 2010;95(1):186–93.PubMedGoogle Scholar
  48. 48.
    Sawin CT, Geller A, Wolf PA, Belanger AJ, Baker E, Bacharach P, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. N Engl J Med. 1994;331(19):1249–52.PubMedGoogle Scholar
  49. 49.
    Abonowara A, Quraishi A, Sapp JL, Alqambar MH, Saric A, O’Connell CM, et al. Prevalence of atrial fibrillation in patients taking TSH suppression therapy for management of thyroid cancer. Clin Invest Med. 2012;35(3):E152–6.PubMedGoogle Scholar
  50. 50.
    Gorka J, Taylor-Gjevre RM, Arnason T. Metabolic and clinical consequences of hyperthyroidism on bone density. Int J Endocrinol. 2013;2013:638727.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Sugitani I, Fujimoto Y. Effect of postoperative thyrotropin suppressive therapy on bone mineral density in patients with papillary thyroid carcinoma: a prospective controlled study. Surgery. 2011;150(6):1250–7.PubMedGoogle Scholar
  52. 52.
    Wang LY, Smith AW, Palmer FL, Tuttle RM, Mahrous A, Nixon IJ, et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid. 2015;25(3):300–7.PubMedGoogle Scholar
  53. 53.
    Panico A, Lupoli GA, Fonderico F, Marciello F, Martinelli A, Assante R, et al. Osteoporosis and thyrotropin-suppressive therapy: reduced effectiveness of alendronate. Thyroid. 2009;19(5):437–42.PubMedGoogle Scholar
  54. 54.
    Abrahamsen B, Jorgensen HL, Laulund AS, Nybo M, Brix TH, Hegedus L. Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(9):2040–50.Google Scholar
  55. 55.
    Mikosch P, Obermayer-Pietsch B, Jost R, Jauk B, Gallowitsch HJ, Kresnik E, et al. Bone metabolism in patients with differentiated thyroid carcinoma receiving suppressive levothyroxine treatment. Thyroid. 2003;13(4):347–56.PubMedGoogle Scholar
  56. 56.
    Lee MY, Park JH, Bae KS, Jee YG, Ko AN, Han YJ, et al. Bone mineral density and bone turnover markers in patients on long-term suppressive levothyroxine therapy for differentiated thyroid cancer. Ann Surg Treat Res. 2014;86(2):55–60.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Tournis S, Antoniou JD, Liakou CG, Christodoulou J, Papakitsou E, Galanos A, et al. Volumetric bone mineral density and bone geometry assessed by peripheral quantitative computed tomography in women with differentiated thyroid cancer under TSH suppression. Clin Endocrinol. 2015;82(2):197–204.Google Scholar
  58. 58.
    Mitchell AL, Gandhi A, Scott-Coombes D, Perros P. Management of thyroid cancer: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S150–s60.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154(6):787–803.PubMedGoogle Scholar
  60. 60.
    Pacini F, Castagna MG, Brilli L, Pentheroudakis G. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23(Suppl 7):vii110–9.PubMedGoogle Scholar
  61. 61.
    Pitoia F, Ward L, Wohllk N, Friguglietti C, Tomimori E, Gauna A, et al. Recommendations of the Latin American Thyroid Society on diagnosis and management of differentiated thyroid cancer. Arq Bras Endocrinol Metabol. 2009;53(7):884–7.PubMedGoogle Scholar
  62. 62.
    Takami H, Ito Y, Okamoto T, Yoshida A. Therapeutic strategy for differentiated thyroid carcinoma in Japan based on a newly established guideline managed by Japanese Society of Thyroid Surgeons and Japanese Association of Endocrine Surgeons. World J Surg. 2011;35(1):111–21.PubMedGoogle Scholar
  63. 63.
    Takami H, Ito Y, Okamoto T, Onoda N, Noguchi H, Yoshida A. Revisiting the guidelines issued by the Japanese Society of Thyroid Surgeons and Japan Association of Endocrine Surgeons: a gradual move towards consensus between Japanese and western practice in the management of thyroid carcinoma. World J Surg. 2014;38(8):2002–10.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institutes of Health—National Institute of Diabetes and Digestive and Kidney DiseaseBethesdaUSA

Personalised recommendations