Advertisement

Radioiodine Therapy in Differentiated Thyroid Carcinoma

  • Jasna Mihailovic
  • Stanley J. Goldsmith
Chapter

Abstract

Radioactive iodine [RAI] has been used in the management of patients with differentiated thyroid cancer for over 70 years. During this period, the role of RAI has evolved from treatment of metastatic disease only to include ablation of thyroid remnant tissue following total or near-total thyroidectomy. Along the way, it became apparent that patients who received RAI ablation had fewer recurrences than patients managed with thyroid hormone replacement therapy only, assigning an additional role to RAI, i.e., administration as adjuvant therapy. Currently, based on the long-term outcome experience in patients receiving ablative doses of RAI, physicians involved in the utilization of RAI are reexamining its role as an adjuvant therapy. Thus, at the present time, the decision as to ablate or not to ablate remnant tissue (and hence to forgo an adjuvant role) in patients with minimal disease and few risk factors is undergoing revision. In addition, advances in imaging instrumentation (gamma camera, SPECT, SPECT/CT, and PET/CT) and radionuclide production (I-123, I-124, F-18 FDG), available pharmacologic agents (recombinant human TSH and tyrosine kinase inhibitors), and laboratory testing (serum TSH and thyroglobulin) provide many options in terms of management. Hence, the role and utilization of RAI have become increasingly complex. This review presents the highlights of the present knowledge and understanding of the role of RAI in differentiated thyroid cancer. The reader is encouraged to investigate the many references provided as well as chapters in this compendium dealing with some aspects in more detail.

Keywords

Differentiated thyroid carcinoma Radioiodine therapy Thyroid ablation Adjuvant therapy Metastatic thyroid cancer 

References

  1. 1.
    Siegel E. The beginnings of radioiodine therapy of metastatic thyroid carcinoma: a memoir of Samuel M. Seidlin, MD (1895-1955) and his celebrated patient. Cancer Biother Radiopharm. 1999;14:71–9.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Becker DV, Sawin CT. Radioiodine and thyroid disease: the beginning. Semin Nucl Med. 1996;26:155–64.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mazzaferri EL. Thyroid remnant 131I ablation for papillary and follicular thyroid carcinoma. Thyroid. 1997;7:265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mazzaferri EL, Kloos RT. Current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16:1229–42.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Jonklaas J, Cooper DS, Ain KB, Bigos T, Brierley JD, Haugen BR, Ladenson PW, Magner J, Ross DS, Skarulis MC, Steward DL, Maxon HR, Sherman SI. Radioiodine therapy in patients with stage I differentiated thyroid cancer. Thyroid. 2010;20:1423–4.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Schvartz C, Bonnetain F, Dabakuyo S, Gauthier M, Cueff A, Fieffe S, Pochart JM, Cochet I, Crevisy E, Dalac A, Papathanassiou D, Toubeau M. Impact on overall survival of radioactive iodine in low-risk differentiated thyroid cancer patients. J Clin Endocrinol Metab. 2012;97:1526–35.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lamartina L, Durante C, Filetti S, Cooper DS. Low-risk differentiated thyroid cancer and radioiodine remnant ablation: a systematic review of the literature. J Clin Endocrinol Metab. 2015;100:1748–61.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Hay ID, Thompson GB, Grant CS, et al. Papillary thyroid carcinoma managed at the Mayo clinic during six decades (1940-1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg. 2002;26:879–55.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sacks W, Fung CH, Chang JT, Waxman A, Braunstein GD. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid. 2010;20(11):1235–45.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Sawka AM, Thephamongkhol K, Brouwers M, et al. Clinical review 170: a systematic review and meta-analysis of the effectiveness of radioactive iodine remnant ablation for well-differentiated thyroid cancer. J Clin Endocrinol Metab. 2004;89:3668–76.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Sawka AM, Brierley JD, Tsang RW, Thabane L, Rotstein L, Gafni A, Straus S, Goldstein DP. An updated systematic review and commentary examining the effectiveness of radioactive iodine remnant ablation in well-differentiated thyroid cancer. Endocrinol Metab Clin North Am. 2008;37:457–80.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Podnos YD, Smith DD, Wagman LD, Ellenhorn JD. Survival in patients with papillary thyroid cancer is not affected by the use of radioactive isotope. J Surg Oncol. 2007;96:3–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Podnos YD, Smith D, Wagman LD, Ellenhorn JD. Radioactive iodine offers survival improvement in patients with follicular carcinoma of the thyroid. Surgery. 2005;138:1072–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Taylor T, Specker B, Robbins J, Sperling M, Ho M, Ain K, et al. Outcome after treatment high-risk papillary and non-Hurthle-cell follicular thyroid carcinoma. Ann Intern Med. 1998;129:622–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Goldsmith SJ. To ablate or not to ablate: issues and evidence involved in 131I ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma. Semin Nucl Med. 2011;41:96–104.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mallick U, Harmer C, Hackshaw A, Moss L. Iodine or not (IoN) for low-risk differentiated thyroid cancer: the next UK National Cancer Research Network randomised trial following HiLo. Clin Oncol (R Coll Radiol). 2012;24:159–61.CrossRefGoogle Scholar
  18. 18.
    Baudin E, Travagli JP, Ropers J, Mancusi F, Bruno-Bossio G, Caillou B, Cailleux AF, Lumbroso JD, Parmentier C, Schlumberger M. Microcarcinoma of the thyroid gland: the Gustave-Roussy institute experience. Cancer. 1998;83:553–9.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Hay ID, HutchinsonME G-LT, McIver B, Reinalda ME, Grant CS, Thompson GB, Sebo TJ, Goellner JR. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008;144:980–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ross DS, Litofsky D, Ain KB, Bigos T, Brierley JD, Cooper DS, Haugen BR, Jonklaas J, Ladenson PW, Magner J, Robbins J, Skarulis MC, Steward DL, Maxon HR, Sherman SI. Recurrence after treatment of micropapillary thyroid cancer. Thyroid. 2009;19:1043–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kim HJ, Kim NK, Choi JH, Kim SW, Jin SM, Suh S, Lin HW, Bhattacharyya N. Survival impact of treatment options for papillary microcarcinoma of the thyroid. Laryngoscope. 2009;119:1983–7.CrossRefGoogle Scholar
  22. 22.
    Creach KM, Siegel BA, Nussenbaum B, Grigsby PW. Radioactive iodine therapy decreases recurrence in thyroid papillary microcarcinoma. ISRN Endocrinol. 2012:816386.Google Scholar
  23. 23.
    Bae JC, MinYK CJH, Kim SW. Radioactive iodine ablation does not prevent recurrences in patients with papillary thyroid microcarcinoma. Clin Endocrinol (Oxf). 2013;78:614–20.CrossRefGoogle Scholar
  24. 24.
    Kim HJ, Kim NK, Choi JH, Kim SW, Jin SM, Suh S, Bae JC, Min YK, Chung JH, Kim SW. Radioactive iodine ablation does not prevent recurrences in patients with papillary thyroid microcarcinoma. ClinEndocrinol (Oxf). 2013;78:614–20.CrossRefGoogle Scholar
  25. 25.
    Mihailovic J, Lj S, Stankovic R. Influence of initial treatment on the survival and recurrence in patients with differentiated thyroid microcarcinoma. ClinNucl Med. 2013;38(5):332–8.Google Scholar
  26. 26.
    Kucuk NO, Tari P, Tokmak E, et al. Treatment for microcarcinoma of the thyroid-clinical experience. Clin Nucl Med. 2007;32:279–81.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Soydal C, Araz M, Ozkan E, Arslantas E, Kucuk ON, Aras G. Assessment of recurrence rates in papillary thyroid microcarcinoma patients with and without histopathological risk factors after radioiodine ablation treatment. Nucl Med Commun. 2015;36(2):109–13.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JWA, Wiersinga W. European Thyroid Cancer Taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol. 2006;154:787–803.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand MJ, Goldsmith SJ, et al. The SNMMI practice guideline for therapy of thyroid disease with I-131 3.0. JNM. 2012;53:1633–51.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Luster M, Clarke SE, Dietlin M, Lassman M, Lind P, Oyen WJG, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:1941–59.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Zaman M, Toor R, Kamal S, Maqbool M, Habib S, Niaz K. A randomized clinical trial comparing 50mCi and 100mCi of iodine-131 for ablation of differentiated thyroid cancers. J Pak Med Assoc. 2006;56:353–6.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Prpic M, Dabelic N, Stanici J, Jukic T, Milosevic M, et al. Adjuvant thyroid remnant ablation in patients with differentiated thyroid carcinoma confined to the thyroid: a comparison of ablation success with different activities of radioiodine (I-131). Ann Nucl Med. 2012;26:744–51.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Fallahi B, Beiki D, Takavar A, Fard-Esfahani A, Gilani KA, et al. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: a large randomized clinical trial. Nucl Med Commun. 2012;33:275–82.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674–85.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Maenpaa HO, Heikkonen J, Vaalavirta L, Tenhunen M, Joensuu H. Low vs. high radioiodine activity to ablate the thyroid after thyroidectomy for cancer: a randomized study. PLoS One. 2008;3:e1885.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    McCowen KD, Adler RA, Ghaed N, Verdon T, Hofeldt FD. Low dose radioiodine thyroid ablation in postsurgical patients with thyroid cancer. Am J Med. 1976;61:52–8.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Bal C, PadhyAK JS, Pant GS, Basu AK. Prospective randomized clinical trial to evaluate the optimal dose of 131I for remnant ablation in patients with differentiated thyroid carcinoma. Cancer. 1996;77:2574–80.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Bal CS, Kumar A, Pant GS. Radioiodine dose for remnant ablation in differentiated thyroid carcinoma: a randomized clinical trial in 509 patients. J Clin Endocrinol Metab. 2004;89:1666–73.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Pilli T, Brianzoni E, Capoccetti F, Castagna MG, Fattori S, et al. A comparison of 1850 (50 mCi) and 3700MBq (100 mCi) 131-iodine administered doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92:3542–6.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Creutzig H. High or low dose radioiodine ablation of thyroid remnants? Eur J Nucl Med. 1987;12:500–2.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Johansen K, Woodhouse NJ, Odugbesan O. Comparison of 1073MBq and 3700MBq iodine-131 in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid cancer. J Nucl Med. 1991;32:252–4.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Maxon HRIII, Englaro WW, Thomas SR, et al. Radioiodine-131 therapy for well-differentiated thyroid cancer—a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rawson RW, Rall JE, Peacock W. Limitations and indications in the treatment of cancer of the thyroid with radioactive iodine. J Clin Endocrinol Metab. 1951;11:1128–31.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Dam HQ, Kim SM, Lin HC, Intenzo CM. 131I therapeutic efficacy is not influenced by stunning after diagnostic whole-body scanning. Radiology. 2004;232:527–33.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sawka AM, Ibrahim-Zada I, Galacgac P, Tsang RW, Brierley JD, et al. Dietary iodine restriction in preparation for radioactive iodine treatment or scanning in well-differentiated thyroid cancer: a systematic review. Thyroid. 2010;20:1129–38.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pluijmen MJ, Eustatia-Rutten C, Goslings BM, Stokkel MP, Arias AM, et al. Effects of low-iodide diet on postsurgical radioiodide ablation therapy in patients with differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2003;58:428–35.CrossRefGoogle Scholar
  49. 49.
    Morris LF, Wilder MS, Waxman AD, Braunstein GD. Reevaluation of the impact of a stringent low iodine diet on ablation rates in radioiodine treatment of thyroid carcinoma. Thyroid. 2001;11:749–55.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Edmonds CJ, Hayes S, Kermode JC, Thompson BD. Measurement of serum TSH and thyroid hormones in the ATA Thyroid Nodule/DTC Guidelines 117 management of treatment of thyroid carcinoma with radioiodine. Br J Radiol. 1977;50:799–807.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Robbins RJ, Driedger A, Magner J. Recombinant human thyrotropin-assisted radioiodine therapy for patients with metastatic thyroid cancer who could not elevate endogenous thyrotropin or be withdrawn from thyroxine. Thyroid. 2006;16:1121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Luster M, Felbinger R, Dietlein M, Reiners C. Thyroid hormone withdrawal in patients with differentiated thyroid carcinoma: a one hundred thirty-patient pilot survey on consequences of hypothyroidism and a pharmaco-economic comparison to recombinant thyrotropin administration. Thyroid. 2005;15(10):1147–55.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lee J, Yun MJ, Nam KH, Chung WY, Soh EY, Park CS. Quality of life and effectiveness comparisons of thyroxine withdrawal, triiodothyronine withdrawal, and recombinant thyroid-stimulating hormone administration for low-dose radioiodine remnant ablation of differentiated thyroid carcinoma. Thyroid. 2010;20:173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tu J, Wang S, Huo Z, Lin Y, Li X, Wang S. Recombinant human thyrotropin-aided versus thyroid hormone withdrawal-aided radioiodine treatment for differentiated thyroid cancer after total thyroidectomy: a meta-analysis. Radiother Oncol. 2014;110:25–30.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Seregni E, Mallia A, Chiesa C, Scaramellini G, Massimino M, Bombardieri E. Radioiodine therapy of differentiated thyroid cancer. In: Kumali A, Goldsmith SJG, editors. Nuclear medicine therapy. Principles and clinical applications. New York: Springer Science+Business; 2013. p. 133–53.Google Scholar
  56. 56.
    Haq MS, Harmer C. Non-surgical management of thyroid cancer. In: Mazzaferri EL, Harmer C, Mallick UK, Kendall-Taylor P, editors. Practical management of thyroid cancer. A multidisciplinary approach. London: Springer-Verlag; 2006. p. 171–91.CrossRefGoogle Scholar
  57. 57.
    Grigsby PW, Siegel BA, Baker S, et al. Radiation exposures from outpatient radioactive (131I) therapy for thyroid carcinoma. JAMA. 2000;283:2272–4.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jentzen W, Balschuweit D, Schmitz J, et al. The influence of saliva flow stimulation on the absorbed radiation dose to the salivary glands during radioiodine therapy of thyroid cancer using 124I PET (/CT) imaging. Eur J Nucl Med Mol Imaging. 2010;37:2298–306.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Thomas SR, Samaratunga RC, Sperling M, Maxon HR. Predictive estimate of blood dose from external counting data preceding radioiodine therapy for thyroid cancer. Nucl Med Biol. 1993;20:157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Alevizaki C, Molfetas M, Samartzis A, et al. Iodine 131 treatment for differentiated thyroid carcinoma in patients with end stage renal failure: dosimetric, radiation safety, and practical considerations. Hormones (Athens). 2006;5(4):276–87.CrossRefGoogle Scholar
  61. 61.
    Daumerie C, Vynkier S, Caussin J, et al. Radioiodine treatment of thyroid carcinoma in patients on maintenance haemodialysis. Thyroid. 1996;6:301–4.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Holst JP, Burman KD, Atkins F, Umans JG, Jonklaas J. Radioiodine therapy for thyroid cancer and hyperthyroidism in patients with end-stage renal disease on haemodialysis. Thyroid. 2005;15:1321–31.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kaptein EM, Levenson H, Siegel ME, Gadallah M, Akmal M. Radioiodine dosimetry in patients with end-stage renal disease receiving continuous ambulatory peritoneal dialysis therapy. J Clin Endocrinol Metab. 2000;85:3058–64.PubMedPubMedCentralGoogle Scholar
  64. 64.
    O’Connor MK, Cullen MJ, Malone JF. The value of a tracer dose in predicting the kinetics of therapeutic doses of 131I in thyrotoxicosis. Br J Radiol. 1979;52:719–26.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Jimenes GR, Moreno AS, Gonzalez EN, et al. Iodine-131 treatment of thyroid papillary carcinoma in patients undergoing dialysis for chronic renal failure: a dosimetric method. Thyroid. 2001;11:1031–4.CrossRefGoogle Scholar
  66. 66.
    Howard N, Glasser M. Iodine 131 ablation therapy for a patient on maintenance haemodialysis. Br J Radiol. 1981;54:259.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Allweiss P, Braunstein GD, Katz A, Waxman A. Sialadenitis following I-131 therapy for thyroid carcinoma: concise communication. J Nucl Med. 1984;25:755e758.Google Scholar
  68. 68.
    Alexander C, Bader JB, Schaefer A, Finke C, Kirsh CM. Intermediate and long term side-effects of high dose radioiodine therapy for thyroid carcinoma. J Nucl Med. 1998;39:1551–4.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13:265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Mandel SJ, Mandel L. Persistent sialadenitis after radioactive iodine therapy: report of two cases. J Oral Maxillofac Surg. 1999;57:738–e41.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Caglar M, Tuncel M, Alpar R. Scintigraphic evaluation of salivary gland dysfunction in patients with thyroid cancer after radioiodine treatment. ClinNucl Med. 2002;27:767–71.Google Scholar
  72. 72.
    Hyer S, Kong A, Pratt B, Harmer C. Salivary gland toxicity after radioiodine therapy for thyroid cancer. Clin Oncol. 2007;19:83–6.CrossRefGoogle Scholar
  73. 73.
    Goldsmith SJ. Thyroid carcinoma. In: Khalikhali I, Maublant JC, Goldsmith SJ, editors. Nuclear oncology: diagnosis & therapy. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 197–219.Google Scholar
  74. 74.
    Mazzaferri EL. Gonadal damage from 131I therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;57:313–4.CrossRefGoogle Scholar
  75. 75.
    Wichers M, Benz E, Palmedo H, Biersack HJ, Grunwald F, et al. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 2000;27:503–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol (Oxf). 2002;56:755–8.CrossRefGoogle Scholar
  77. 77.
    Lushbaugh CC, Casarett GW. The effects of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–25.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sarkar SD, Beierwaltes WH, Gill SP, Cowley BJ. Subsequent fertility and birth histories of children and adolescents treated with 131I for thyroid cancer. J Nucl Med. 1976;17:460–4.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Pacini F, Gasperi M, Fugazzola L, Ceccarelli C, Lippi F, et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35:1418–22.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ceccarelli C, Bencivelli W, Morciano D, Pinchera A, Pacini F. 131-I therapy for differentiated thyroid cancer leads to an earlier onset of menopause: results of a retrospective study. J Clin Endocrinol Metab. 2001;86:3512–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78:92–3.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Dottorini ME, Lomuscio G, Mazzucchelli L, Vignati A, Colombo L. Assessment of female fertility and carcinogenesis after iodine-131 therapy for differentiated thyroid carcinoma. J Nucl Med. 1995;36:21–7.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Sawka AM, Lakra DC, Lea J, Alshehri B, Tsang RW, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol (Oxf). 2008;69:479–90.CrossRefGoogle Scholar
  84. 84.
    Schlumberger M, De Vathaire F, Ceccarelli C, Delisle MJ, Francese C, et al. Exposure to radioiodine (I-131) for scintigraphy or therapy does not preclude pregnancy in thyroid cancer patients. J Nucl Med. 1996;37:606–12.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Garsi JP, Schlumberger M, Rubino C, Ricard M, Labbe M, et al. Therapeutic administration of 131-I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 2008;49:845–52.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–15.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Rubino C, de Vathaire F, Dottorini ME, Hall P, Schvartz C, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Iyer NG, Morris LG, Tuttle RM, Shaha AR, Ganly I. Rising incidence of second cancers in patients with low-risk (T1N0) thyroid cancer who receive radioactive iodine therapy. Cancer. 2011;117:4439–46.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Chen AY, Levy L, Goepfert H, Brown BW, Spitz MR, Vassilopoulou-Sellin R. The development of breast carcinoma in women with thyroid carcinoma. Cancer. 2001;92:225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ries LAG, Melbert D, Krapcho M, et al., editors. SEER cancer statistics review, 1975–2004. Bethesda, MD: National Cancer Institute; 2007.Google Scholar
  91. 91.
    Howlader N, Noone AM, Krapcho M, et al., editors. SEER cancer statistics review (CSR) 1975–2010. National Cancer Institute website. http://seer.cancer. gov/csr/1975_2010/. Published April 2013. Updated June 14, 2013. Accessed March 3, 2014.
  92. 92.
    Mihailovic J, Nikoletic K, Srbovan D. Recurrent disease in juvenile differentiated thyroid carcinoma: prognostic factors, treatment and outcome. J Nucl Med. 2014;55:701–17.CrossRefGoogle Scholar
  93. 93.
    Hay ID, Gonzalez-Losada T, Reinalda MS, et al. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34:1192–202.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Jarzab B, Handkiewicz-Junak D, Wloch J, et al. Multivariate analysis of prognostic factors for differentiated thyroid carcinoma in children. Eur J Nucl Med. 2000;27:833–41.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Popovtzer A, Shpitzer T, Bahar G, Feinmesser R, Segal K. Thyroid cancer in children: management and outcome experience of a referral center. Otolaryngol Head Neck Surg. 2006;135:581–4.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chow SM, Law SCK, Mendenhall WM, Au SK, Yau S, Lau WH. Differentiated thyroid carcinoma in childhood and adolescence: clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42:176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Handkiewicz-Junak D, Wloch J, Roskosz J, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48:879–88.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Palmer BA, Zarroug AE, Poley RN, Kollars JP, Moir CR. Papillary thyroid carcinoma in children: risk factors and complications of disease recurrence. J Pediatr Surg. 2005;40:1284–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Farahati J, Bucsky P, Parlowsky T, Mader U, Reiners C. Characteristics of differentiated thyroid carcinoma in children and adolescents with respect to age, gender, and histology. Cancer. 1997;80:2156–62.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    La Quaglia MP, Corbally MT, Heller G, et al. Recurrence and morbidity in differentiated thyroid cancer in children. Surgery. 1988;104:1149–56.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Mazzaferri EL, Jhiang S. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Lin JD, Chao TC, Hsueh C, Kuo SF. High recurrent rate of multicentric papillary thyroid carcinoma. Ann Surg Oncol. 2009;16:2609–16.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. The American Thyroid Association Guidelines task Force on pediatric thyroid cancer. Thyroid. 2015;25:716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12:773–803.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Franzius C, Dietlein M, Biermann M, et al. Procedure guideline for radioiodine therapy and (131) iodine whole-body scintigraphy in paediatric patients with differentiated thyroid cancer. Nuklearmedizin. 2007;46:224–31.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Benua RS, Cicale NR, Sonenberg M, Rawson RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171–82.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging. 2008;35(7):1405–12.  https://doi.org/10.1007/s00259-008-0761-x.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Rivkees SA, Mazzaferri EL, Verburg FA, Reiners C, Luster M, et al. The treatment of differentiated thyroid cancer in children: emphasis on surgical approach and radioactive iodine therapy. Endocr Rev. 2011;32:798–826.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Beierwaltes WH, Rabbani R, Dmuchowski C, Lloyd RV, Eyre P, Mallette S. An analysis of “ablation of thyroid remnants”with131I in 511 patients from 1947-1984: experience at university of Michigan. J Nucl Med. 1984;25:1287–93.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Siegel JA, et al. MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med. 1999;40(2):37S–61S.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Snyder W, Ford MR, Warner GG, et al. MIRD pamphlet no. 11: S, absorbed dose per unit cumulated activity for selected radionuclides and organs. New York, NY: Society of Nuclear Medicine; 1975.Google Scholar
  112. 112.
    Song H, et al. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J Nucl Med. 2006;47(12):1985–94.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Schlumberger M, Pacini F. Thyroid tumors. Paris: Editions Nucleon; 2006.Google Scholar
  114. 114.
    Dupuy DE, Monchik JM, Decrea C, Pisharodi L. Radiofrequency ablation of regional recurrence from well-differentiated thyroid malignancy. Surgery. 2001;130:971–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Lewis BD, Hay ID, Charboneau JW, McIver B, Reading CC, Goellner JR. Percutaneous ethanol injection for treatment of cervical lymph node metastases in patients with papillary thyroid carcinoma. AJR Am J Roentgenol. 2002;178:699–704.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Eustatia-Rutten CF, Romijn JA, Guijt MJ, Vielvoye GJ, van den Berg R, Corssmit EP, Pereira AM, Smit JW. Outcome of palliative embolization of bone metastases in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3184–9.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Cabanillas ME, Waguespack SG, Bronstein Y, Williams MD, Feng L, et al. Treatment with tyrosine kinase inhibitors for patients with differentiated thyroid cancer: the M. D. Anderson experience. J Clin Endocrinol Metab. 2010;95:2588–95.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Woyach JA, Shah MH. New therapeutic advances in the management of progressive thyroid cancer. Endocr Relat Cancer. 2009;16:715–31.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Mihailovic J, Stefanovic LJ, Malesevic M, Erak M, Tesanovic D. Metastatic differentiated thyroid carcinoma: clinical management and outcome of disease in patient with initial and late distant metastases. Nucl Med Commun. 2009;30:558–64.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Mazzaferri EL. An overview of the management of thyroid cancer. In: Mazzaferri EL, Harmer C, Mallick UK, Kendall-Taylor P, editors. Practical management of thyroid cancer. A multidisciplinary approach. London: Springer-Verlag; 2006. p. 1–28.CrossRefGoogle Scholar
  121. 121.
    Chiu AC, Delpassand ES, Sherman SI. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab. 1977;82:3637.CrossRefGoogle Scholar
  122. 122.
    Ronga G, Filesi M, Montesano T, Di Nicola AD, Pace C, et al. Lung metastases from differentiated thyroid carcinoma. A 40 years’ experience. Q J Nucl Med Mol Imaging. 2004;48:12–9.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Schlumberger M, Challeton C, De Vathaire F, Travagli JP, Gardet P, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Ilgan S, Karacalioglu AO, Pabuscu Y, Atac GK, Arslan N, et al. Iodine-131 treatment and high-resolution CT: results in patients with lung metastases from differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:825–30.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Hod N, Hagag P, Baumer M, Sandbank J, Horne T. Differentiated thyroid carcinoma in children and young adults: evaluation of response to treatment. Clin Nucl Med. 2005;30:387–90.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Mihailovic J, StefanovicLj MM. Differentiated thyroid carcinoma with distant metastases: probability of survival and its predicting factors. Cancer Biotherapy Radioph. 2007;22:250–5.CrossRefGoogle Scholar
  127. 127.
    Stefanovic LJ, Vojicic J, Malesevic M, Mihailovic J, Srbovan D. Treatment outcome in patients with differentiated thyroid carcinoma and distant metastases. J Balkan Un Oncol. 2001;6:263–2.Google Scholar
  128. 128.
    Haq M, Harmer C. Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome. Clin Endocrinol. 2005;63:87–93.CrossRefGoogle Scholar
  129. 129.
    Mihailović J, Stefanovic LJ, Malesevic M, Markoski B. The importance of age over radioiodine avidity as a prognostic factor in differentiated thyroid carcinoma with distant metastases. Thyroid. 2009;19:227–32.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear MedicineOncology Institute of VojvodinaSremska KamenicaSerbia
  2. 2.Department of RadiologyFaculty of Medicine, University of Novi SadNovi SadSerbia
  3. 3.Division of Nuclear Medicine and Molecular ImagingNew York-Presbyterian HospitalNew YorkUSA
  4. 4.Department of Radiology and MedicineWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations