Advertisement

Disorders of Thyroid Hormone Transporters and Receptors

  • W. Edward VisserEmail author
Chapter

Abstract

Thyroid hormone transporters and receptors are crucial factors that determine the biological effects of thyroid hormone. This chapter deals with disorders that result from abnormal function of the thyroid hormone transporter MCT8 and of either the thyroid hormone receptor isoforms (resistance to thyroid hormone, RTH). The clinical and biochemical phenotypes, imaging modalities, underlying mechanisms, and treatment options are discussed for MCT8 deficiency, RTH-alpha, and RTH-beta.

Keywords

Thyroid hormone signaling disorders Thyroid hormone resistance MCT8 deficiency Allan–Herndon–Dudley syndrome AHDS Resistance to thyroid hormone RTH-alpha RTH-beta 

References

  1. 1.
    Grüters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol. 2012;8:104–13.CrossRefGoogle Scholar
  2. 2.
    Koulouri O, Moran C, Halsall D, et al. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab. 2013;27:745–62.CrossRefGoogle Scholar
  3. 3.
    Hennemann G, Docter R, Friesema EC, et al. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 2001;22:451–76.CrossRefGoogle Scholar
  4. 4.
    Visser WE, Friesema EC, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol. 2011;25:1–14.CrossRefGoogle Scholar
  5. 5.
    Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278:40128–35.CrossRefGoogle Scholar
  6. 6.
    Friesema EC, Jansen J, Jachtenberg JW, et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol. 2008;22:1357–69.CrossRefGoogle Scholar
  7. 7.
    Sugiyama D, Kusuhara H, Taniguchi H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood- brain barrier: high affinity transporter for thyroxine. J Biol Chem. 2003;278:43489–95.CrossRefGoogle Scholar
  8. 8.
    Gereben B, Zavacki AM, Ribich S, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.CrossRefGoogle Scholar
  9. 9.
    St Germain DL, Galton VA, Hernandez A. Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology. 2009;150:1097–107.CrossRefGoogle Scholar
  10. 10.
    Huang SA, Tu HM, Harney JW, et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med. 2000;343:185–9.CrossRefGoogle Scholar
  11. 11.
    Maynard MA, Marino-Enriquez A, Fletcher JA, et al. Thyroid hormone inactivation in gastrointestinal stromal tumors. N Engl J Med. 2014;370:1327–34.CrossRefGoogle Scholar
  12. 12.
    Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormones actions. Endocr Rev. 2010;31:139–70.CrossRefGoogle Scholar
  13. 13.
    Friesema EC, Grueters A, Biebermann H, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364:1435–7.CrossRefGoogle Scholar
  14. 14.
    Dumitrescu AM, Liao XH, Best TB, et al. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74:168–75.CrossRefGoogle Scholar
  15. 15.
    Visser WE, Vrijmoeth P, Visser FE, et al. Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT8) mutations in a cohort of adult patients with mental retardation. Clin Endocrinol. 2013;78:310–5.CrossRefGoogle Scholar
  16. 16.
    Fu J, Dumitrescu AM. Inherited defects in thyroid hormone cell-membrane transport and metabolism. Best Pract Res Clin Endocrinol Metab. 2014;28:189–201.CrossRefGoogle Scholar
  17. 17.
    Matheus MG, Lehman RK, Bonilha L, et al. Redefining the pediatric phenotype of X-linked monocarboxylate transporter 8 (MCT8) deficiency: implications for diagnosis and therapies. J Child Neurol. 2015;30:1664–8.CrossRefGoogle Scholar
  18. 18.
    Schwartz CE, Stevenson RE. The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best Pract Res Clin Endocrinol Metab. 2007;21:307–21.CrossRefGoogle Scholar
  19. 19.
    Visser WE, Jansen J, Friesema EC, et al. Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum Mutat. 2009;30:29–38.CrossRefGoogle Scholar
  20. 20.
    Sijens PE, Rodiger LA, Meiners LC, et al. 1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency. J Clin Endocrinol Metab. 2008;93:1854–9.CrossRefGoogle Scholar
  21. 21.
    Friesema EC, Jansen J, Heuer H, et al. Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat Clin Pract Endocrinol Metab. 2006;2:512–23.CrossRefGoogle Scholar
  22. 22.
    Frints GM, Lenzner S, Bauters M, et al. MCT8 mutation analysis and identification of the first female with Allan–Herndon–Dudley syndrome due to loss of MCT8 expression. Eur J Hum Genet. 2008;16:1029–37.CrossRefGoogle Scholar
  23. 23.
    Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest. 2007;117:627–35.CrossRefGoogle Scholar
  24. 24.
    Ceballos A, Belinchon MM, Sanchez-Mendoza E, et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3′-triiodo-L-thyronine. Endocrinology. 2009;150:2491–6.CrossRefGoogle Scholar
  25. 25.
    Mayerl S, Müller J, Bauer R, et al. Transporters MCT8 and OATP1C1 maintain murine brain homeostasis. J Clin Invest. 2014;124:1987–99.CrossRefGoogle Scholar
  26. 26.
    López-Espíndola D, Morales-Bastos C, Grijota-Martínez C, et al. Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab. 2014;99:E2799–804.CrossRefGoogle Scholar
  27. 27.
    Liao XH, Di Cosmo C, Dumitrescu AM, et al. Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes. Endocrinology. 2011;152:1180–91.CrossRefGoogle Scholar
  28. 28.
    Di Cosmo C, Liao XH, Dumitrescu AM, et al. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest. 2010;120:3377–88.CrossRefGoogle Scholar
  29. 29.
    Trajkovic-Arsic M, Muller J, Darras VM, et al. Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice. Endocrinology. 2010;151:5053–62.CrossRefGoogle Scholar
  30. 30.
    Trajkovic-Arsic M, Visser TJ, Darras VM, et al. Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice. Endocrinology. 2010;151:802–9.CrossRefGoogle Scholar
  31. 31.
    Wemeau JL, Pigeyre M, Proust-Lemoine E, et al. Beneficial effects of propylthiouracil plus L-thyroxine treatment in a patient with a mutation in MCT8. J Clin Endocrinol Metab. 2008;93:2084–8.CrossRefGoogle Scholar
  32. 32.
    Verge CF, Konrad D, Cohen M, et al. Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. J Clin Endocrinol Metab. 2012;97:4515–23.CrossRefGoogle Scholar
  33. 33.
    Di Cosmo C, Liao XH, Dumitrescu AM, et al. A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology. 2009;150:4450–8.CrossRefGoogle Scholar
  34. 34.
    Kersseboom S, Horn S, Visser WE, et al. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol. 2014;28:1961–70.CrossRefGoogle Scholar
  35. 35.
    Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab. 1967;27:279–94.CrossRefGoogle Scholar
  36. 36.
    Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta. 2013;1830:3987–4003.CrossRefGoogle Scholar
  37. 37.
    Ferrara AM, Onigata K, Ercan O, et al. Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab. 2012;97:1328–36.CrossRefGoogle Scholar
  38. 38.
    Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37:135–87.CrossRefGoogle Scholar
  39. 39.
    Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14:348–99.PubMedGoogle Scholar
  40. 40.
    Thompson CC, Weinberger C, Lebo R, et al. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science. 1987;237:1610–4.CrossRefGoogle Scholar
  41. 41.
    Kaneshige M, Suzuki H, Kaneshige K, et al. A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci U S A. 2001;98:15095–100.CrossRefGoogle Scholar
  42. 42.
    Liu YY, Tachiki KH, Brent GA. A targeted thyroid hormone receptor alpha gene dominant-negative mutation (P398H) selectively impairs gene expression in differentiated embryonic stem cells. Endocrinology. 2002;143:2664–72.CrossRefGoogle Scholar
  43. 43.
    Tinnikov A, Nordström K, Thorén P, et al. Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J. 2002;21:5079–87.CrossRefGoogle Scholar
  44. 44.
    Bochukova E, Schoenmakers N, Agostini M, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med. 2012;366:243–9.CrossRefGoogle Scholar
  45. 45.
    Van Mullem A, van Heerebeek R, Chrysis D, et al. Clinical phenotype and mutant TRalpha1. N Engl J Med. 2012;366:1451–3.CrossRefGoogle Scholar
  46. 46.
    Moran C, Chatterjee K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best Pract Res Clin Endocrinol Metab. 2015;29:647–57.CrossRefGoogle Scholar
  47. 47.
    Demir K, van Gucht AL, Büyükinan M, et al. Diverse genotypes and phenotypes of three novel thyroid hormone receptor-α mutations. J Clin Endocrinol Metab. 2016;101:2945–54.CrossRefGoogle Scholar
  48. 48.
    Barca-Mayo O, Liao XH, Alonso M, et al. Thyroid hormone receptor α and regulation of type 3 deiodinase. Mol Endocrinol. 2011;25:575–83.CrossRefGoogle Scholar
  49. 49.
    Van Gucht AL, Meima ME, Zwaveling-Soonawala N. Resistance to thyroid hormone alpha in an 18-month-old girl: clinical, therapeutic, and molecular characteristics. Thyroid. 2016;26:338–46.CrossRefGoogle Scholar
  50. 50.
    Kim DW, Park JW, Willingham MC, et al. A histone deacetylase inhibitor improves hypothyroidism caused by a TRα1 mutant. Hum Mol Genet. 2014;23:2651–64.CrossRefGoogle Scholar
  51. 51.
    Dumitrescu AM, Liao XH, Abdullah MS, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37:1247–52.CrossRefGoogle Scholar
  52. 52.
    Schoenmakers E, Agostini M, Mitchell C, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120:4220–35.CrossRefGoogle Scholar
  53. 53.
    Schomburg L, Dumitrescu AM, Liao XH, et al. Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with SBP2 gene mutations. Thyroid. 2009;19:277–81.CrossRefGoogle Scholar
  54. 54.
    Saito Y, Shichiri M, Hamajima T, et al. Enhancement of lipid peroxidation and its amelioration by vitamin E in a subject with mutations in the SBP2 gene. J Lipid Res. 2015;56:2172–82.CrossRefGoogle Scholar
  55. 55.
    Schoenmakers E, Carlson B, Agostini M, et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest. 2016;126:992–6.CrossRefGoogle Scholar
  56. 56.
    Anttonen A, Hilander T, Linnankivi T, et al. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology. 2015;85:1–10.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Internal MedicineErasmus Medical CentreRotterdamThe Netherlands

Personalised recommendations