Advertisement

Thyroid Cancer in Children and Adolescents

  • Young Ah Lee
  • Andrew J. BauerEmail author
Chapter

Abstract

An increasing number of children and adolescents are diagnosed with thyroid nodules. Similar to adults, the majority of nodules are benign, and the appearance of the nodule on thyroid ultrasound is the most efficient method of determining which nodules should undergo evaluation using fine needle aspiration to stratify patients for surveillance or surgical resection. Total thyroidectomy is the treatment of choice for the majority of patients with papillary thyroid cancer. Lobectomy is reserved for patients with indeterminate cytology and no evidence of a malignant oncogene, as well as differentiated thyroid cancer (DTC) variants with low invasive potential. The incorporation of the American Thyroid Association (ATA) pediatric guidelines on the evaluation and management of thyroid nodules and DTC risk levels allows for selective use of radioiodine treatment, reserving immediate postoperative RAI for patients with an increased risk of having persistent disease. For patients with a family history of multiple endocrine neoplasia type 2 (MEN2), the timing for thyroidectomy, as well as the timing for initiation of surveillance for pheochromocytoma and hyperparathyroidism, is defined by the RET codon in accordance with recommendations from ATA guidelines on medullary thyroid cancer (MTC). There is an increased risk for de novo mutations of RET codon 918 (MEN2B), and diagnosis after 4 years of age is associated with a decreased likelihood of achieving surgical remission from MTC. Disease-specific mortality for pediatric thyroid cancer is very low; however, the risk of medical and surgical complications remains high. This risk may be reduced by creation and referral of children and adolescents to regional, high-volume pediatric thyroid referral centers.

Keywords

Thyroid cancer Thyroid nodule Child Adolescent Multiple endocrine neoplasia Papillary Follicular Medullary 

References

  1. 1.
    Vergamini LB, et al. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164(6):1481–5.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Siegel DA, et al. Cancer incidence rates and trends among children and adolescents in the United States, 2001-2009. Pediatrics. 2014;134(4):e945–55.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Gupta A, et al. A standardized assessment of thyroid nodules in children confirms higher cancer prevalence than in adults. J Clin Endocrinol Metab. 2013;98(8):3238–45.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–53.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Francis GL, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee YA, et al. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. J Clin Endocrinol Metab. 2015;100(4):1619–29.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Corrias A, et al. Diagnostic features of thyroid nodules in pediatrics. Arch Pediatr Adolesc Med. 2010;164(8):714–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hayashida N, et al. Thyroid ultrasound findings in children from three Japanese prefectures: Aomori, Yamanashi and Nagasaki. PLoS One. 2013;8(12):e83220.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Avula S, et al. Incidental thyroid abnormalities identified on neck US for non-thyroid disorders. Pediatr Radiol. 2010;40(11):1774–80.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Kovalchik SA, et al. Absolute risk prediction of second primary thyroid cancer among 5-year survivors of childhood cancer. J Clin Oncol. 2013;31(1):119–27.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Ronckers CM, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166(4):618–28.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kovatch KJ, Bauer AJ, Isaacoff EJ, Prickett KK, Adzick NS, Kazahaya K, Sullivan LM, Mostoufi-Moab S et al. Pediatric thyroid carcinoma in patients with Graves’ disease: the role of ultrasound in selecting patients for definitive therapy. Horm Res Paediatr, 2015;83:408–13.CrossRefGoogle Scholar
  13. 13.
    Corrias A, et al. Thyroid nodules and cancer in children and adolescents affected by autoimmune thyroiditis. Arch Pediatr Adolesc Med. 2008;162(6):526–31.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kambalapalli M, et al. Ultrasound characteristics of the thyroid in children and adolescents with goiter: a single center experience. Thyroid. 2015;25(2):176–82.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Capezzone M, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer. 2008;15(4):1075–81.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sippel RS, Caron NR, Clark OH. An evidence-based approach to familial nonmedullary thyroid cancer: screening, clinical management, and follow-up. World J Surg. 2007;31(5):924–33.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rosario PW, et al. Ultrasonographic screening for thyroid cancer in siblings of patients with apparently sporadic papillary carcinoma. Thyroid. 2012;22(8):805–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Sadowski SM, et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery. 2013;154(6):1194–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Septer S, et al. Thyroid cancer complicating familial adenomatous polyposis: mutation spectrum of at-risk individuals. Hered Cancer Clin Pract. 2013;11(1):13.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pilarski R, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Lauper JM, et al. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Bubien V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50(4):255–63.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Smith JR, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab. 2011;96(1):34–7.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Bertherat J, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009;94(6):2085–91.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Buryk MA, et al. Can malignant thyroid nodules be distinguished from benign thyroid nodules in children and adolescents by clinical characteristics? A review of 89 pediatric patients with thyroid nodules. Thyroid. 2015;25(4):392–400.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Papendieck P, et al. Differentiated thyroid cancer in children: prevalence and predictors in a large cohort with thyroid nodules followed prospectively. J Pediatr. 2015;167(1):199–201.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Wray CJ, et al. Failure to recognize multiple endocrine neoplasia 2B: more common than we think? Ann Surg Oncol. 2008;15(1):293–301.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    McLeod DS, et al. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab. 2012;97(8):2682–92.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mussa A, et al. Serum thyrotropin concentration in children with isolated thyroid nodules. J Pediatr. 2013;163(5):1465–70.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rinaldi S, et al. Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk of differentiated thyroid carcinoma: the EPIC study. J Natl Cancer Inst. 2014;106(6):dju097.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ly S, et al. Features and outcome of autonomous thyroid nodules in children: 31 consecutive patients seen at a single center. J Clin Endocrinol Metab. 2016;101(10):3856–62.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Trimboli P, Treglia G, Giovanella L. Preoperative measurement of serum thyroglobulin to predict malignancy in thyroid nodules: a systematic review. Horm Metab Res. 2015;47(4):247–52.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Oltmann SC, et al. Markedly elevated thyroglobulin levels in the preoperative thyroidectomy patient correlates with metastatic burden. J Surg Res. 2014;187(1):1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zimmermann MB, et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100-299 mug/L: a UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 2013;98(3):1271–80.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Haugen BR, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    American Institute of Ultrasound in, Medicine, et al. AIUM practice guideline for the performance of a thyroid and parathyroid ultrasound examination. J Ultrasound Med. 2013;32(7):1319–29.CrossRefGoogle Scholar
  37. 37.
    Lyshchik A, et al. Diagnosis of thyroid cancer in children: value of gray-scale and power doppler US. Radiology. 2005;235(2):604–13.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mussa A, et al. Predictors of malignancy in children with thyroid nodules. J Pediatr. 2015;167(4):886–92. e1PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Al Nofal A, et al. Accuracy of thyroid nodule sonography for the detection of thyroid cancer in children: systematic review and meta-analysis. Clin Endocrinol. 2016;84(3):423–30.CrossRefGoogle Scholar
  40. 40.
    Koo JS, Hong S, Park CS. Diffuse sclerosing variant is a major subtype of papillary thyroid carcinoma in the young. Thyroid. 2009;19(11):1225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Fukushima M, et al. Clinicopathologic characteristics and prognosis of diffuse sclerosing variant of papillary thyroid carcinoma in Japan: an 18-year experience at a single institution. World J Surg. 2009;33(5):958–62.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lee JY, et al. Diffuse sclerosing variant of papillary carcinoma of the thyroid: imaging and cytologic findings. Thyroid. 2007;17(6):567–73.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Akaishi J, et al. Clinicopathologic features and outcomes in patients with diffuse sclerosing variant of papillary thyroid carcinoma. World J Surg. 2015;39(7):1728–35.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Regalbuto C, et al. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid. 2011;21(4):383–9.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Koltin D, et al. Pediatric thyroid nodules: ultrasonographic characteristics and inter-observer variability in prediction of malignancy. J Pediatr Endocrinol Metab. 2016;29(7):789–94.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Bauer AJ, Francis GL. Evaluation and management of thyroid nodules in children. Curr Opin Pediatr. 2016;28(4):536–44.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Jatana KR, Zimmerman D. Pediatric thyroid nodules and malignancy. Otolaryngol Clin N Am. 2015;48(1):47–58.CrossRefGoogle Scholar
  48. 48.
    Moon JH, et al. Thyroglobulin in washout fluid from lymph node fine-needle aspiration biopsy in papillary thyroid cancer: large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J Clin Endocrinol Metab. 2013;98(3):1061–8.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Giovanella L, Bongiovanni M, Trimboli P. Diagnostic value of thyroglobulin assay in cervical lymph node fine-needle aspirations for metastatic differentiated thyroid cancer. Curr Opin Oncol. 2013;25(1):6–13.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Choi JS, et al. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol. 2009;193(3):871–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Nell S, et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol. 2015;84(4):652–61.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Borysewicz-Sanczyk H, et al. Practical application of elastography in the diagnosis of thyroid nodules in children and adolescents. Horm Res Paediatr. 2016;86(1):39–44.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Barrio M, et al. The incidence of thyroid cancer in focal hypermetabolic thyroid lesions: an 18F-FDG PET/CT study in more than 6000 patients. Nucl Med Commun. 2016;37(12):1290–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Baloch ZW, LiVolsi VA. Post fine-needle aspiration histologic alterations of thyroid revisited. Am J Clin Pathol. 1999;112(3):311–6.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Norlen O, et al. Risk of malignancy for each Bethesda class in pediatric thyroid nodules. J Pediatr Surg. 2015;50(7):1147–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Wharry LI, et al. Thyroid nodules (>/=4 cm): can ultrasound and cytology reliably exclude cancer? World J Surg. 2014;38(3):614–21.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    McCoy KL, et al. The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery. 2007;142(6):837–44. discussion 844 e1-3PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Monaco SE, et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342–50.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Smith M, et al. Indeterminate pediatric thyroid fine needle aspirations: a study of 68 cases. Acta Cytol. 2013;57(4):341–8.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132(5):658–65.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Nikiforov YE, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nikiforov YE, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Buryk MA, et al. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013;77(10):1697–700.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Ballester LY, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Nikita ME, et al. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid. 2016;26(2):227–34.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Picarsic JL, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Givens DJ, et al. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope. 2014;124(9):E389–93.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Henke LE, et al. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61(7):1168–72.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Prasad ML, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in Northeast United States. Cancer. 2016;122(7):1097–107.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lazar L, et al. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bal CS, et al. Is chest x-ray or high-resolution computed tomography scan of the chest sufficient investigation to detect pulmonary metastasis in pediatric differentiated thyroid cancer? Thyroid. 2004;14(3):217–25.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Chow SM, et al. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42(2):176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones (Athens). 2007;6(3):200–9.Google Scholar
  75. 75.
    Machens A, et al. Papillary thyroid cancer in children and adolescents does not differ in growth pattern and metastatic behavior. J Pediatr. 2010;157(4):648–52.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Vriens MR, et al. Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer. 2011;117(2):259–67.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Wada N, et al. Treatment strategy of papillary thyroid carcinoma in children and adolescents: clinical significance of the initial nodal manifestation. Ann Surg Oncol. 2009;16(12):3442–9.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Pawelczak M, et al. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following (1)(3)(1)I treatment: a systematic review. Thyroid. 2010;20(10):1095–101.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hay ID, et al. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hogan AR, et al. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167–72.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Handkiewicz-Junak D, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Sugino K, et al. Papillary thyroid carcinoma in children and adolescents: long-term follow-up and clinical characteristics. World J Surg. 2015;39(9):2259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Markovina S, et al. Treatment approach, surveillance, and outcome of well-differentiated thyroid cancer in childhood and adolescence. Thyroid. 2014;24(7):1121–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Cordioli MI, et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer. 2015;22(6):R311–24.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28(7):742–62.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Li C, et al. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97(12):4559–70.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Penko K, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid. 2005;15(4):320–5.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Rosenbaum E, et al. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol. 2005;18(7):898–902.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ihle MA, et al. Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer. 2014;14:13.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cancer Genome Atlas Research, N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.CrossRefGoogle Scholar
  91. 91.
    Elsheikh TM, et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol. 2008;130(5):736–44.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Kesmodel SB, et al. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma. Surgery. 2003;134(6):1005–12; discussion 1012.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Nikiforov YE, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Fryknas M, et al. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol. 2006;27(4):211–20.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol. 2006;94(8):662–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Dionigi G, et al. Minimally invasive follicular thyroid cancer (MIFTC)—a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck’s Arch Surg. 2014;399(2):165–84.CrossRefGoogle Scholar
  98. 98.
    O'Gorman CS, et al. Thyroid cancer in childhood: a retrospective review of childhood course. Thyroid. 2010;20(4):375–80.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Alfalah H, et al. Risk factors for lateral cervical lymph node involvement in follicular thyroid carcinoma. World J Surg. 2008;32(12):2623–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ito Y, et al. Prognostic significance of patient age in minimally and widely invasive follicular thyroid carcinoma: investigation of three age groups. Endocr J. 2014;61(3):265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sugino K, et al. Prognosis and prognostic factors for distant metastases and tumor mortality in follicular thyroid carcinoma. Thyroid. 2011;21(7):751–7.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Lin JD, et al. Operative strategy for follicular thyroid cancer in risk groups stratified by pTNM staging. Surg Oncol. 2007;16(2):107–13.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Enomoto K, et al. Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J. 2013;60(5):629–35.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Sosa JA, et al. Clinical and economic outcomes of thyroid and parathyroid surgery in children. J Clin Endocrinol Metab. 2008;93(8):3058–65.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Tuggle CT, et al. Pediatric endocrine surgery: who is operating on our children? Surgery. 2008;144(6):869–77; discussion 877.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Biondi B, Filetti S, Schlumberger M. Thyroid-hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab. 2005;1(1):32–40.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Lazar L, et al. Pediatric thyroid cancer: postoperative classifications and response to initial therapy as prognostic factors. J Clin Endocrinol Metab. 2016;101(5):1970–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Pires B, et al. Prognostic factors for early and long-term remission in pediatric differentiated thyroid cancer: the role of gender, age, clinical presentation and the newly proposed American Thyroid Association risk stratification system. Thyroid. 2016;26(10):1480–7.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Bargren AE, et al. Outcomes of surgically managed pediatric thyroid cancer. J Surg Res. 2009;156(1):70–3.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg. 2004;28(12):1187–98.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bilimoria KY, et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246(3):375–81; discussion 381-4PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Grodski S, Serpell J. Evidence for the role of perioperative PTH measurement after total thyroidectomy as a predictor of hypocalcemia. World J Surg. 2008;32(7):1367–73.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sam AH, et al. Serum phosphate predicts temporary hypocalcaemia following thyroidectomy. Clin Endocrinol. 2011;74(3):388–93.CrossRefGoogle Scholar
  114. 114.
    Freire AV, et al. Predicting hypocalcemia after thyroidectomy in children. Surgery. 2014;156(1):130–6.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Golpanian S, et al. Pediatric papillary thyroid carcinoma: outcomes and survival predictors in 2504 surgical patients. Pediatr Surg Int. 2016;32(3):201–8.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Chapter 8. Thyroid. In: Edge SB et al., editors. AJCC cancer staging manual. 7th ed. New York: Springer; 2010. p. 87–96.Google Scholar
  117. 117.
    Rosario PW, et al. The value of diagnostic whole-body scanning and serum thyroglobulin in the presence of elevated serum thyrotropin during follow-up of anti-thyroglobulin antibody-positive patients with differentiated thyroid carcinoma who appeared to be free of disease after total thyroidectomy and radioactive iodine ablation. Thyroid. 2012;22(2):113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Luster M, et al. Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab. 2009;94(10):3948–53.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Handkiewicz-Junak D, et al. Recombinant human thyrotropin preparation for adjuvant radioiodine treatment in children and adolescents with differentiated thyroid cancer. Eur J Endocrinol. 2015;173(6):873–81.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Sohn SY, et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid. 2014;24(5):872–7.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Schoelwer MJ, et al. The use of 123I in diagnostic radioactive iodine scans in children with differentiated thyroid carcinoma. Thyroid. 2015;25(8):935–41.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Cohen JB, Kalinyak JE, McDougall IR. Clinical implications of the differences between diagnostic 123I and post-therapy 131I scans. Nucl Med Commun. 2004;25(2):129–34.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Xue YL, et al. Value of (1)(3)(1)I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging. 2013;40(5):768–78.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Lee JI, et al. Postoperative-stimulated serum thyroglobulin measured at the time of 131I ablation is useful for the prediction of disease status in patients with differentiated thyroid carcinoma. Surgery. 2013;153(6):828–35.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12(8):683–702.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Dinauer C, Francis GL. Thyroid cancer in children. Endocrinol Metab Clin N Am. 2007;36(3):779–806. viiCrossRefGoogle Scholar
  127. 127.
    Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12(4):773–803.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Lassmann M, et al. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55(2):107–15.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Urhan M, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging. 2007;34(7):1012–7.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Kim HY, Gelfand MJ, Sharp SE. SPECT/CT imaging in children with papillary thyroid carcinoma. Pediatr Radiol. 2011;41(8):1008–12.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Sawka AM, et al. A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clin Endocrinol. 2008;68(4):610–7.CrossRefGoogle Scholar
  132. 132.
    Sawka AM, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol. 2008;69(3):479–90.CrossRefGoogle Scholar
  133. 133.
    Pacini F, et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35(9):1418–22.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Verburg FA, et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2010;37(5):896–903.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. Thyroid. 2015;25(6):681–7.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Brown AP, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Klubo-Gwiezdzinska J, et al. Salivary gland malignancy and radioiodine therapy for thyroid cancer. Thyroid. 2010;20(6):647–51.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Verburg FA, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1211–25.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Netzel BC, et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J Clin Endocrinol Metab. 2015;100(8):E1074–83.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Spencer CA. Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96(12):3615–27.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):394–404.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Bannas P, et al. Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 2012;26(1):77–85.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Francis GL, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on pediatric thyroid cancer. Thyroid. 2015;25(7):716–59.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hay ID, et al. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008;144(6):980–7; discussion 987-8.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Clayman GL, et al. Long-term outcome of comprehensive central compartment dissection in patients with recurrent/persistent papillary thyroid carcinoma. Thyroid. 2011;21(12):1309–16.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Clayman GL, et al. Approach and safety of comprehensive central compartment dissection in patients with recurrent papillary thyroid carcinoma. Head Neck. 2009;31(9):1152–63.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Hay ID, et al. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154(6):1448–54; discussion 1454-5PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Shin JE, Baek JH, Lee JH. Radiofrequency and ethanol ablation for the treatment of recurrent thyroid cancers: current status and challenges. Curr Opin Oncol. 2013;25(1):14–9.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Heilo A, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96(9):2750–5.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Biko J, et al. Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur J Nucl Med Mol Imaging. 2011;38(4):651–5.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Padovani RP, et al. Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 2012;22(8):778–83.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Frank RW, et al. Conservative management of thyroglobulin-positive, nonlocalizable thyroid carcinoma. Head Neck. 2013;36(2):155–7.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Rosario PW, et al. Is empirical radioactive iodine therapy still a valid approach to patients with thyroid cancer and elevated thyroglobulin? Thyroid. 2014;24(3):533–6.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Kim WG, et al. Empiric high-dose 131-iodine therapy lacks efficacy for treated papillary thyroid cancer patients with detectable serum thyroglobulin, but negative cervical sonography and 18F-fluorodeoxyglucose positron emission tomography scan. J Clin Endocrinol Metab. 2010;95(3):1169–73.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Robbins RJ, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Covell LL, Ganti AK. Treatment of advanced thyroid cancer: role of molecularly targeted therapies. Target Oncol. 2015;10(3):311–24.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Brose MS, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Schlumberger M, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Weitzman SP, Cabanillas ME. The treatment landscape in thyroid cancer: a focus on cabozantinib. Cancer Manag Res. 2015;7:265–78.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Kim A, et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children's oncology group. Pediatr Blood Cancer. 2015;62(9):1562–6.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Iyer P, Mayer JL, Ewig JM. Response to sorafenib in a pediatric patient with papillary thyroid carcinoma with diffuse nodular pulmonary disease requiring mechanical ventilation. Thyroid. 2014;24(1):169–74.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Waguespack SG, et al. The successful use of sorafenib to treat pediatric papillary thyroid carcinoma. Thyroid. 2009;19(4):407–12.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Ho AL, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Wells SA Jr, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Waguespack SG, et al. Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nat Rev Endocrinol. 2011;7(10):596–607.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Margraf RL, et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat. 2009;30(4):548–56.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res. 2015;204:139–56.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Leboulleux S, et al. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course. Cancer. 2002;94(1):44–50.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Machens A, et al. Prospects of remission in medullary thyroid carcinoma according to basal calcitonin level. J Clin Endocrinol Metab. 2005;90(4):2029–34.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Meijer JA, et al. Radioactive iodine in the treatment of medullary thyroid carcinoma: a controlled multicenter study. Eur J Endocrinol. 2013;168(5):779–86.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Brauckhoff M, et al. Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: an exploratory analysis. Surgery. 2008;144(6):1044–50. discussion 1050-3PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Laure Giraudet A, et al. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol. 2008;158(2):239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Fox E, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res. 2013;19(15):4239–48.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of PediatricsSeoul National University Children’s HospitalSeoulSouth Korea
  2. 2.Department of PediatricsSeoul National University College of MedicineSeoulSouth Korea
  3. 3.Division of Endocrinology and DiabetesChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of PediatricsThe Perelman School of Medicine, The University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations