Advertisement

Molecular Genetics and Diagnostics of Thyroid Cancer

  • Susan J. Hsiao
  • Yuri E. NikiforovEmail author
Chapter

Abstract

Molecular testing of thyroid fine-needle aspirates of indeterminate nodules is increasingly being utilized in combination with cytology to guide clinical management. The major molecular testing methodologies of gene mutation/rearrangement panel testing and gene expression classifier have been described in validation studies, and the initial experience with these tests at other institutions has been reported. These molecular tests, as well as newer, expanded, or combined panels, have shown promise in ruling in or ruling out malignancy. In addition, gene mutation/rearrangement panels can provide helpful prognostic information and potential therapeutic targets.

Keywords

Thyroid cancer Papillary carcinoma Follicular carcinoma Mutations Molecular genetics 

References

  1. 1.
    Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Investig. 2010;33:51–6.CrossRefGoogle Scholar
  3. 3.
    Ali SZ, Cibas ES. The Bethesda system for reporting thyroid cytopathology. New York: Springer; 2010.CrossRefGoogle Scholar
  4. 4.
    Baloch ZW, LiVolsi VA, Asa SL, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute thyroid fine-needle aspiration state of the science conference. Diagn Cytopathol. 2008;36:425–37.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ohori NP, Schoedel KE. Variability in the atypia of undetermined significance/follicular lesion of undetermined significance diagnosis in the Bethesda system for reporting thyroid cytopathology: sources and recommendations. Acta Cytol. 2011;55:492–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn Cytopathol. 2002;26:41–4.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mazzaferri EL. Management of a solitary thyroid nodule. N Engl J Med. 1993;328:553–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Alexander EK, Kennedy GC, Baloch ZW, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367:705–15.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Bartolazzi A, Orlandi F, Saggiorato E, et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol. 2008;9:543–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Keutgen XM, Filicori F, Crowley MJ, et al. A panel of four miRNAs accurately differentiates malignant from benign indeterminate thyroid lesions on fine needle aspiration. Clin Cancer Res. 2012;18:2032–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Nikiforov YE, Ohori NP, Hodak SP, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159:676–90.CrossRefGoogle Scholar
  13. 13.
    Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chiosea S, Nikiforova M, Zuo H, et al. A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr Pathol. 2009;20:122–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ciampi R, Nikiforov YE. Alterations of the BRAF gene in thyroid tumors. Endocr Pathol. 2005;16:163–72.CrossRefGoogle Scholar
  17. 17.
    Hou P, Liu D, Xing M. Functional characterization of the T1799-1801del and A1799-1816ins BRAF mutations in papillary thyroid cancer. Cell Cycle. 2007;6:377–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Adeniran AJ, Zhu Z, Gandhi M, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216–22.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245–62.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Afkhami M, Karunamurthy A, Chiosea S, et al. Histopathologic and clinical characterization of thyroid tumors carrying the BRAF(K601E) mutation. Thyroid. 2016;26:242–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Trovisco V, Soares P, Preto A, et al. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch. 2005;446:589–95.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ciampi R, Knauf JA, Kerler R, et al. Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. J Clin Invest. 2005;115:94–101.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol. 2003;120:71–7.CrossRefGoogle Scholar
  27. 27.
    Jung CK, Little MP, Lubin JH, et al. The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J Clin Endocrinol Metab. 2014;99(2):E276–85.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nikiforov YE. RET/PTC rearrangement—a link between Hashimoto’s thyroiditis and thyroid cancer...Or not. J Clin Endocrinol Metab. 2006;91:2040–2.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J Clin Endocrinol Metab. 2006;91:3603–10.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Greco A, Pierotti MA, Bongarzone I, Pagliardini S, Lanzi C, Della PG. TRK-T1 is a novel oncogene formed by the fusion of TPR and TRK genes in human papillary thyroid carcinomas. Oncogene. 1992;7:237–42.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Greco A, Mariani C, Miranda C, et al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol Cell Biol. 1995;15:6118–27.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Martin-Zanca D, Hughes SH, Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature. 1986;319:743–8.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Radice P, Sozzi G, Miozzo M, et al. The human tropomyosin gene involved in the generation of the TRK oncogene maps to chromosome 1q31. Oncogene. 1991;6:2145–8.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Leeman-Neill RJ, Kelly LM, Liu P, et al. ETV6-NTRK3 is a common chromosomal rearrangement in radiation-associated thyroid cancer. Cancer. 2013;120(6):799–807.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Prasad ML, Vyas M, Horne MJ, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in Northeast United States. Cancer. 2016;122:1097–107.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kelly LM, Barila G, Liu P, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci U S A. 2014;111:4233–8.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Karunamurthy A, Panebianco F, Hsiao S, et al. Prevalence and phenotypic characteristics of EIF1AX mutations in thyroid nodules. Endocr Relat Cancer. 2016;23(4):295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Lemoine NR, Mayall ES, Wyllie FS, et al. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989;4:159–64.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Namba H, Rubin SA, Fagin JA. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990;4:1474–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Suarez HG, du Villard JA, Severino M, et al. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990;5:565–70.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Motoi N, Sakamoto A, Yamochi T, Horiuchi H, Motoi T, Machinami R. Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial origin. Pathol Res Pract. 2000;196:1–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dwight T, Thoppe SR, Foukakis T, et al. Involvement of the PAX8/peroxisome proliferator-activated receptor gamma rearrangement in follicular thyroid tumors. J Clin Endocrinol Metab. 2003;88:4440–5.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol. 2003;162:1053–60.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab. 2003;88:2318–26.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Marques AR, Espadinha C, Catarino AL, et al. Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab. 2002;87:3947–52.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE. PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol. 2002;26:1016–23.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dahia PL, Marsh DJ, Zheng Z, et al. Somatic deletions and mutations in the Cowden disease gene, PTEN, in sporadic thyroid tumors. Cancer Res. 1997;57:4710–3.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Gustafson S, Zbuk KM, Scacheri C, Eng C. Cowden syndrome. Semin Oncol. 2007;34:428–34.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Hou P, Liu D, Shan Y, et al. Genetic alterations and their relationship in the phosphatidylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13:1161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Wang Y, Hou P, Yu H, et al. High prevalence and mutual exclusivity of genetic alterations in the phosphatidylinositol-3-kinase/akt pathway in thyroid tumors. J Clin Endocrinol Metab. 2007;92:2387–90.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Fagin JA, Matsuo K, Karmakar A, Chen DL, Tang SH, Koeffler HP. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993;91:179–84.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA. Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest. 1993;91:1753–60.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Dobashi Y, Sugimura H, Sakamoto A, et al. Stepwise participation of p53 gene mutation during dedifferentiation of human thyroid carcinomas. Diagn Mol Pathol. 1994;3:9–14.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Ho YS, Tseng SC, Chin TY, Hsieh LL, Lin JD. p53 gene mutation in thyroid carcinoma. Cancer Lett. 1996;103:57–63.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Takeuchi Y, Daa T, Kashima K, Yokoyama S, Nakayama I, Noguchi S. Mutations of p53 in thyroid carcinoma with an insular component. Thyroid. 1999;9:377–81.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Garcia-Rostan G, Costa AM, Pereira-Castro I, et al. Mutation of the PIK3CA gene in anaplastic thyroid cancer. Cancer Res. 2005;65:10199–207.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Ricarte-Filho JC, Ryder M, Chitale DA, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res. 2009;69:4885–93.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339:959–61.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339:957–9.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Landa I, Ganly I, Chan TA, et al. Frequent somatic TERT promoter mutations in thyroid cancer: higher prevalence in advanced forms of the disease. J Clin Endocrinol Metab. 2013;98:E1562–6.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Liu T, Wang N, Cao J, et al. The age- and shorter telomere-dependent TERT promoter mutation in follicular thyroid cell-derived carcinomas. Oncogene. 2013;33(42):4978–84.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Liu X, Bishop J, Shan Y, et al. Highly prevalent TERT promoter mutations in aggressive thyroid cancers. Endocr Relat Cancer. 2013;20:603–10.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Melo M, Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2014;99(5):E754–65.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kunstman JW, Juhlin CC, Goh G, et al. Characterization of the mutational landscape of anaplastic thyroid cancer via whole-exome sequencing. Hum Mol Genet. 2015;24:2318–29.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest. 2016;126:1052–66.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kloos RT, Eng C, Evans DB, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid. 2009;19:565–612.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    de Groot JW, Links TP, Plukker JT, Lips CJ, Hofstra RM. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr Rev. 2006;27:535–560.Google Scholar
  68. 68.
    Elisei R, Romei C, Cosci B, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92:4725–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Eng C, Smith DP, Mulligan LM, et al. Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple endocrine neoplasia type 2B and related sporadic tumours. Hum Mol Genet. 1994;3:237–41.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hofstra RM, Landsvater RM, Ceccherini I, et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature. 1994;367:375–6.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hansford JR, Mulligan LM. Multiple endocrine neoplasia type 2 and RET: from neoplasia to neurogenesis. J Med Genet. 2000;37:817–27.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Mulligan LM, Marsh DJ, Robinson BG, et al. Genotype-phenotype correlation in multiple endocrine neoplasia type 2: report of the international RET mutation consortium. J Intern Med. 1995;238:343–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Agrawal N, Jiao Y, Sausen M, et al. Exomic sequencing of medullary thyroid cancer reveals dominant and mutually exclusive oncogenic mutations in RET and RAS. J Clin Endocrinol Metab. 2013;98:E364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Boichard A, Croux L, Al Ghuzlan A, et al. Somatic RAS mutations occur in a large proportion of sporadic RET-negative medullary thyroid carcinomas and extend to a previously unidentified exon. J Clin Endocrinol Metab. 2012;97:E2031–5.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ji JH, Oh YL, Hong M, et al. Identification of driving ALK fusion genes and genomic landscape of medullary thyroid cancer. PLoS Genet. 2015;11:e1005467.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Moura MM, Cavaco BM, Pinto AE, Leite V. High prevalence of RAS mutations in RET-negative sporadic medullary thyroid carcinomas. J Clin Endocrinol Metab. 2011;96:E863–8.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Schulten HJ, Al-Maghrabi J, Al-Ghamdi K, et al. Mutational screening of RET, HRAS, KRAS, NRAS, BRAF, AKT1, and CTNNB1 in medullary thyroid carcinoma. Anticancer Res. 2011;31:4179–83.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Garcia-Jimenez C, Santisteban P. TSH signalling and cancer. Arq Bras Endocrinol Metabol. 2007;51:654–71.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Nishihara E, Amino N, Maekawa K, et al. Prevalence of TSH receptor and Gsalpha mutations in 45 autonomously functioning thyroid nodules in Japan. Endocr J. 2009;56:791–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Fuhrer D, Holzapfel HP, Wonerow P, Scherbaum WA, Paschke R. Somatic mutations in the thyrotropin receptor gene and not in the Gs alpha protein gene in 31 toxic thyroid nodules. J Clin Endocrinol Metab. 1997;82:3885–91.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Trulzsch B, Krohn K, Wonerow P, et al. Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med. 2001;78:684–91.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Parma J, Duprez L, Van Sande J, et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas. J Clin Endocrinol Metab. 1997;82:2695–701.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Jo YS, Huang S, Kim YJ, et al. Diagnostic value of pyrosequencing for the BRAF V600E mutation in ultrasound-guided fine-needle aspiration biopsy samples of thyroid incidentalomas. Clin Endocrinol. 2009;70:139–44.CrossRefGoogle Scholar
  84. 84.
    Zatelli MC, Trasforini G, Leoni S, et al. BRAF V600E mutation analysis increases diagnostic accuracy for papillary thyroid carcinoma in fine-needle aspiration biopsies. Eur J Endocrinol. 2009;161:467–73.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Su X, Jiang X, Xu X, et al. Diagnostic value of BRAF (V600E)-mutation analysis in fine-needle aspiration of thyroid nodules: a meta-analysis. Onco Targets Ther. 2016;9:2495–509.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    DiLorenzo MM, Miller JL, Tuluc M, Wang ZX, Savarese VW, Pribitkin EA. False-positive FNA due to highly sensitive BRAF assay. Endocr Pract. 2014;20:e8–10.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Xing M, Clark D, Guan H, et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J Clin Oncol. 2009;27:2977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Cantara S, Capezzone M, Marchisotta S, et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab. 2010;95:1365–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Beaudenon-Huibregtse S, Alexander EK, Guttler RB, et al. Centralized molecular testing for oncogenic gene mutations complements the local cytopathologic diagnosis of thyroid nodules. Thyroid. 2014;24:1479–87.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Eszlinger M, Piana S, Moll A, et al. Molecular testing of thyroid fine-needle aspirations improves presurgical diagnosis and supports the histologic identification of minimally invasive follicular thyroid carcinomas. Thyroid. 2015;25:401–9.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 2015;100:2743–50.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Le Mercier M, D'Haene N, De Neve N, et al. Next-generation sequencing improves the diagnosis of thyroid FNA specimens with indeterminate cytology. Histopathology. 2015;66:215–24.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Nikiforov YE, Carty SE, Chiosea SI, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120:3627–34.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Chudova D, Wilde JI, Wang ET, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95(12):5296–304.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Alexander EK, Schorr M, Klopper J, et al. Multicenter clinical experience with the Afirma gene expression classifier. J Clin Endocrinol Metab. 2014;99:119–25.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Harrell RM, Bimston DN. Surgical utility of Afirma: effects of high cancer prevalence and oncocytic cell types in patients with indeterminate thyroid cytology. Endocr Pract. 2014;20:364–9.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Marti JL, Avadhani V, Donatelli LA, et al. Wide inter-institutional variation in performance of a molecular classifier for indeterminate thyroid nodules. Ann Surg Oncol. 2015;22:3996–4001.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    McIver B, Castro MR, Morris JC, et al. An independent study of a gene expression classifier (Afirma) in the evaluation of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2014;99:4069–77.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Santhanam P, Khthir R, Gress T, et al. Gene expression classifier for the diagnosis of indeterminate thyroid nodules: a meta-analysis. Med Oncol. 2016;33:14.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Chou CK, Chen RF, Chou FF, et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid. 2010;20:489–94.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Chou CK, Yang KD, Chou FF, et al. Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metab. 2013;98:E196–205.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ferris RL, Baloch Z, Bernet V, et al. American Thyroid Association statement on surgical application of molecular profiling for thyroid nodules: current impact on perioperative decision making. Thyroid. 2015;25:760–8.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Noureldine SI, Olson MT, Agrawal N, Prescott JD, Zeiger MA, Tufano RP. Effect of gene expression classifier molecular testing on the surgical decision-making process for patients with thyroid nodules. JAMA Otolaryngol Head Neck Surg. 2015;141:1082–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yip L, Wharry LI, Armstrong MJ, et al. A clinical algorithm for fine-needle aspiration molecular testing effectively guides the appropriate extent of initial thyroidectomy. Ann Surg. 2014;260:163–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ito Y, Yoshida H, Maruo R, et al. BRAF mutation in papillary thyroid carcinoma in a Japanese population: its lack of correlation with high-risk clinicopathological features and disease-free survival of patients. Endocr J. 2009;56:89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kim TY, Kim WB, Song JY, et al. The BRAF mutation is not associated with poor prognostic factors in Korean patients with conventional papillary thyroid microcarcinoma. Clin Endocrinol. 2005;63:588–93.CrossRefGoogle Scholar
  108. 108.
    Liu RT, Chen YJ, Chou FF, et al. No correlation between BRAFV600E mutation and clinicopathological features of papillary thyroid carcinomas in Taiwan. Clin Endocrinol. 2005;63:461–6.CrossRefGoogle Scholar
  109. 109.
    Xing M, Alzahrani AS, Carson KA, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Song YS, Lim JA, Choi H, et al. Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer. 2016;122:1370–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Liu Z, Hou P, Ji M, et al. Highly prevalent genetic alterations in receptor tyrosine kinases and phosphatidylinositol 3-kinase/akt and mitogen-activated protein kinase pathways in anaplastic and follicular thyroid cancers. J Clin Endocrinol Metab. 2008;93:3106–16.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Nikiforova MN, Wald AI, Roy S, Durso MB, Nikiforov YE. Targeted next-generation sequencing panel (ThyroSeq) for detection of mutations in thyroid cancer. J Clin Endocrinol Metab. 2013;98:E1852–60.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Shrestha RT, Karunamurthy A, Amin K, Nikiforov YE, Caramori ML. Multiple mutations detected preoperatively may predict aggressive behavior of papillary thyroid cancer and guide management—a case report. Thyroid. 2015;25:1375–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pathology and Cell BiologyColumbia University Medical CenterNew YorkUSA
  2. 2.Division of Molecular and Genomic Pathology, Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations