Advertisement

The Hypothalamic-Pituitary-Thyroid Axis: Physiological Regulation and Clinical Implications

  • Alina Gavrila
  • Anthony N. Hollenberg
Chapter

Abstract

Thyroid hormone (TH) is essential for normal growth and differentiation as well as control of energy homeostasis and metabolism during adult life. Tight regulation of the thyroid function can be achieved through the development of the hypothalamic-pituitary-thyroid (HPT) axis, a neuroendocrine loop consisting of a negative feedback mechanism between circulating TH levels and the hypothalamus and pituitary gland. When circulating TH levels are low, the HPT axis is activated simultaneously at multiple levels to increase both the TRH production in the hypothalamus and the TSH production in pituitary. The entire HPT axis is suppressed when circulating TH levels are high. The effects of TH in the hypothalamus and pituitary are primarily mediated by T3, the majority of T3 being produced locally in the presence of type 2 deiodinase (DIO2) from circulating T4. Each individual has a physiological HPT axis set point determined mainly by genetic factors where it functions optimally.

Since TSH is easily measurable in the peripheral circulation, it has become the main laboratory test used to interpret thyroid function and monitor patients with hypo- and hyperthyroidism. Several clinical states can affect the normal regulation of the HPT axis, such co-administered medications, illness, food deprivation, and cold. Further research will help us better understand how to interpret the function of the HPT axis in these conditions.

Keywords

Thyroid hormone (TH) Thyroid-stimulating hormone (TSH) Thyrotropin-releasing hormone (TRH) Hypothalamic-pituitary-thyroid (HPT) axis 

References

  1. 1.
    Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocr Rev. 2014;35(2):159–94.PubMedGoogle Scholar
  2. 2.
    Fliers E, Boelen A, van Trotsenburg AS. Central regulation of the hypothalamo-pituitary-thyroid (HPT) axis: focus on clinical aspects. Handb Clin Neurol. 2014;124:127–38.PubMedGoogle Scholar
  3. 3.
    Nillni EA. Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol. 2010;31(2):134–56.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev. 2015;36(2):214–44.PubMedGoogle Scholar
  5. 5.
    Nikrodhanond AA, Ortiga-Carvalho TM, Shibusawa N, Hashimoto K, Liao XH, Refetoff S, Yamada M, Mori M, Wondisford FE. Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. J Biol Chem. 2006;281(8):5000–7.PubMedGoogle Scholar
  6. 6.
    Chiamolera MI, Wondisford FE. Minireview: thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology. 2009;150(3):1091–6.PubMedGoogle Scholar
  7. 7.
    Yamada M, Saga Y, Shibusawa N, Hirato J, Murakami M, Iwasaki T, Hashimoto K, Satoh T, Wakabayashi K, Taketo MM, Mori M. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci U S A. 1997;94(20):10862–7.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Beck-Peccoz P, Persani L, Calebiro D, Bonomi M, Mannavola D, Campi I. Syndromes of hormone resistance in the hypothalamic-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab. 2006;20(4):529–46.PubMedGoogle Scholar
  9. 9.
    Joseph-Bravo P, Jaimes-Hoy L, Uribe RM, Charli JL. 60 years of neuroendocrinology: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. J Endocrinol. 2015;227(3):X3.PubMedGoogle Scholar
  10. 10.
    Beck-Peccoz P, Amr S, Menezes-Ferreira MM, Faglia G, Weintraub BD. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin-releasing hormone. N Engl J Med. 1985;312(17):1085–90.PubMedGoogle Scholar
  11. 11.
    Yamada M, Satoh T, Mori M. Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid. 2003;13(12):1111–21.PubMedGoogle Scholar
  12. 12.
    Roelfsema F, Veldhuis JD. Thyrotropin secretion patterns in health and disease. Endocr Rev. 2013;34(5):619–57.PubMedGoogle Scholar
  13. 13.
    Haugen BR. Drugs that suppress TSH or cause central hypothyroidism. Best Pract Res Clin Endocrinol Metab. 2009;23(6):793–800.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Costa-e-Sousa RH, Hollenberg AN. Minireview: the neural regulation of the hypothalamic-pituitary-thyroid axis. Endocrinology. 2012;153(9):4128–35.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hoermann R, Midgley JE, Larisch R, Dietrich JW. Homeostatic control of the thyroid-pituitary axis: perspectives for diagnosis and treatment. Front Endocrinol (Lausanne). 2015;6:177.Google Scholar
  16. 16.
    Rothacker KM, Brown SJ, Hadlow NC, Wardrop R, Walsh JP. Reconciling the log-linear and non-log-linear nature of the TSH-free T4 relationship: intra-individual analysis of a large population. J Clin Endocrinol Metab. 2016;101(3):1151–8.PubMedGoogle Scholar
  17. 17.
    Abdalla SM, Bianco AC. Defending plasma T3 is a biological priority. Clin Endocrinol. 2014;81(5):633–41.Google Scholar
  18. 18.
    Biondi B, Wartofsky L. Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism? J Clin Endocrinol Metab. 2012;97(7):2256–71.PubMedGoogle Scholar
  19. 19.
    Fliers E, Kalsbeek A, Boelen A. Beyond the fixed setpoint of the hypothalamus-pituitary-thyroid axis. Eur J Endocrinol. 2014;171(5):R197–208.PubMedGoogle Scholar
  20. 20.
    Roelfsema F, Pijl H, Kok P, Endert E, Fliers E, Biermasz NR, Pereira AM, Veldhuis JD. Thyrotropin secretion in healthy subjects is robust and independent of age and gender, and only weakly dependent on body mass index. J Clin Endocrinol Metab. 2014;99(2):570–8.PubMedGoogle Scholar
  21. 21.
    Russell W, Harrison RF, Smith N, Darzy K, Shalet S, Weetman AP, Ross RJ. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J Clin Endocrinol Metab. 2008;93(6):2300–6.PubMedGoogle Scholar
  22. 22.
    Boelen A, Wiersinga WM, Fliers E. Fasting-induced changes in the hypothalamus-pituitary-thyroid axis. Thyroid. 2008;18(2):123–9.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Van den Berghe G. Non-thyroidal illness in the ICU: a syndrome with different faces. Thyroid. 2014;24(10):1456–65.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Vella KR, Ramadoss P, Lam FS, Harris JC, Ye FD, Same PD, O’Neill NF, Maratos-Flier E, Hollenberg AN. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab. 2011;14(6):780–90.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Reinehr T. Obesity and thyroid function. Mol Cell Endocrinol. 2010;316(2):165–71.PubMedGoogle Scholar
  26. 26.
    Reinehr T, Isa A, de Sousa G, Dieffenbach R, Andler W. Thyroid hormones and their relation to weight status. Horm Res. 2008;70(1):51–7.PubMedGoogle Scholar
  27. 27.
    Svare A, Nilsen TI, Bjøro T, Asvold BO, Langhammer A. Serum TSH related to measures of body mass: longitudinal data from the HUNT study, Norway. Clin Endocrinol. 2011;74(6):769–75.Google Scholar
  28. 28.
    Fliers E, Guldenaar SE, Wiersinga WM, Swaab DF. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab. 1997;82(12):4032–6.PubMedGoogle Scholar
  29. 29.
    Boelen A, Kwakkel J, Fliers E. Beyond low plasma T3: local thyroid hormone metabolism during inflammation and infection. Endocr Rev. 2011;32(5):670–93.PubMedGoogle Scholar
  30. 30.
    de Vries EM, Fliers E, Boelen A. The molecular basis of the non-thyroidal illness syndrome. J Endocrinol. 2015;225(3):R67–81.PubMedGoogle Scholar
  31. 31.
    Kaptein EM, Sanchez A, Beale E, Chan LS. Clinical review: thyroid hormone therapy for postoperative nonthyroidal illnesses: a systematic review and synthesis. J Clin Endocrinol Metab. 2010;95(10):4526–34.PubMedGoogle Scholar
  32. 32.
    Galli E, Pingitore A, Iervasi G. The role of thyroid hormone in the pathophysiology of heart failure: clinical evidence. Heart Fail Rev. 2010;15(2):155–69.PubMedGoogle Scholar
  33. 33.
    Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L’abbate A, Mariotti R, Iervasi G. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93(4):1351–8.PubMedGoogle Scholar
  34. 34.
    Klemperer JD. Thyroid hormone and cardiac surgery. Thyroid. 2002;12(6):517–21.PubMedGoogle Scholar
  35. 35.
    Van den Berghe G, Wouters P, Weekers F, Mohan S, Baxter RC, Veldhuis JD, Bowers CY, Bouillon R. Reactivation of pituitary hormone release and metabolic improvement by infusion of growth hormone-releasing peptide and thyrotropin-releasing hormone in patients with protracted critical illness. J Clin Endocrinol Metab. 1999;84(4):1311–23.PubMedGoogle Scholar
  36. 36.
    Boucai L, Hollowell JG, Surks MI. An approach for development of age-, gender-, and ethnicity-specific thyrotropin reference limits. Thyroid. 2011;21(1):5–11.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Surks MI, Hollowell JG. Age-specific distribution of serum thyrotropin and antithyroid antibodies in the US population: implications for the prevalence of subclinical hypothyroidism. J Clin Endocrinol Metab. 2007;92(12):4575–82.PubMedGoogle Scholar
  38. 38.
    Vadiveloo T, Donnan PT, Murphy MJ, Leese GP. Age- and gender-specific TSH reference intervals in people with no obvious thyroid disease in Tayside, Scotland: the Thyroid Epidemiology, Audit, and Research Study (TEARS). J Clin Endocrinol Metab. 2013;98(3):1147–53.PubMedGoogle Scholar
  39. 39.
    Gussekloo J, van Exel E, de Craen AJ, Meinders AE, Frölich M, Westendorp RG. Thyroid status, disability and cognitive function, and survival in old age. JAMA. 2004;292(21):2591–9.PubMedGoogle Scholar
  40. 40.
    Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RG, van Heemst D, Demeneix BA. Thyroid hormone signaling and homeostasis during aging. Endocr Rev. 2013;34(4):556–89.PubMedGoogle Scholar
  41. 41.
    Veldhuis JD. Changes in pituitary function with ageing and implications for patient care. Nat Rev Endocrinol. 2013;9(4):205–15.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Over R, Mannan S, Nsouli-Maktabi H, Burman KD, Jonklaas J. Age and the thyrotropin response to hypothyroxinemia. J Clin Endocrinol Metab. 2010;95(8):3675–83.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Alkemade A, Unmehopa UA, Wiersinga WM, Swaab DF, Fliers E. Glucocorticoids decrease thyrotropin-releasing hormone messenger ribonucleic acid expression in the paraventricular nucleus of the human hypothalamus. J Clin Endocrinol Metab. 2005;90(1):323–7.PubMedGoogle Scholar
  44. 44.
    Samuels MH, Luther M, Henry P, Ridgway EC. Effects of hydrocortisone on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab. 1994;78(1):211–5.PubMedGoogle Scholar
  45. 45.
    Brabant A, Brabant G, Schuermeyer T, Ranft U, Schmidt FW, Hesch RD, von zur Mühlen A. The role of glucocorticoids in the regulation of thyrotropin. Acta Endocrinol. 1989;121(1):95–100.PubMedGoogle Scholar
  46. 46.
    Samuels MH. Effects of variations in physiological cortisol levels on thyrotropin secretion in subjects with adrenal insufficiency: a clinical research center study. J Clin Endocrinol Metab. 2000;85(4):1388–93.PubMedGoogle Scholar
  47. 47.
    Samuels MH, Henry P, Ridgway EC. Effects of dopamine and somatostatin on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab. 1992;74(1):217–22.PubMedGoogle Scholar
  48. 48.
    Agner T, Hagen C, Andersen AN, Djursing H. Increased dopaminergic activity inhibits basal and metoclopramide-stimulated prolactin and thyrotropin secretion. J Clin Endocrinol Metab. 1986;62(4):778–82.PubMedGoogle Scholar
  49. 49.
    Pinto LP, Hanna FW, Evans LM, Davies JS, John R, Scanlon MF. The TSH response to domperidone reflects the biological activity of prolactin in macroprolactinaemia and hyperprolactinaemia. Clin Endocrinol. 2003;59(5):580–4.Google Scholar
  50. 50.
    Beck-Peccoz P, Persani L, Mannavola D, Campi I. Pituitary tumours: TSH-secreting adenomas. Best Pract Res Clin Endocrinol Metab. 2009;23(5):597–606.PubMedGoogle Scholar
  51. 51.
    Mannavola D, Persani L, Vannucchi G, Zanardelli M, Fugazzola L, Verga U, Facchetti M, Beck-Peccoz P. Different responses to chronic somatostatin analogues in patients with central hyperthyroidism. Clin Endocrinol. 2005;62(2):176–81.Google Scholar
  52. 52.
    Graeppi-Dulac J, Vlaeminck-Guillem V, Perier-Muzet M, Dalle S, Orgiazzi J. Endocrine side-effects of anti-cancer drugs: the impact of retinoids on the thyroid axis. Eur J Endocrinol. 2014;170(6):R253–62.PubMedGoogle Scholar
  53. 53.
    Sherman SI, Gopal J, Haugen BR, Chiu AC, Whaley K, Nowlakha P, Duvic M. Central hypothyroidism associated with retinoid X receptor-selective ligands. N Engl J Med. 1999;340(14):1075–9.PubMedGoogle Scholar
  54. 54.
    Miller J, Carney P. Central hypothyroidism with oxcarbazepine therapy. Pediatr Neurol. 2006;34(3):242–4.PubMedGoogle Scholar
  55. 55.
    Zatelli MC, Ambrosio MR, Bondanelli M, Degli Uberti E. Pituitary side effects of old and new drugs. J Endocrinol Investig. 2014;37(10):917–23.Google Scholar
  56. 56.
    Lupoli R, Di Minno A, Tortora A, Ambrosino P, Lupoli GA, Di Minno MN. Effects of treatment with metformin on TSH levels: a meta-analysis of literature studies. J Clin Endocrinol Metab. 2014;99(1):E143–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations