Advertisement

The Thyroid and Its Regulation by the TSHR: Evolution, Development, and Congenital Defects

  • Heiko KrudeEmail author
  • Heike Biebermann
Chapter

Abstract

The most frequent inborn endocrine disorder is congenital hypothyroidism (CH) with a prevalence of 1 in 3000 newborns. In most cases a morphological defect of the thyroid gland occurs, and in these cases of “thyroid dysgenesis,” a defect in the different steps of thyroid organogenesis that resembles the phylogenetic development of the thyroid can be expected. However, so far, in this larger group of patients suffering from thyroid dysgenesis, a defect is only rarely found in transcription factor genes known from thyroid organogenesis and phylogenesis, e.g., in NKX and PAX genes. In addition some patients with defects of thyroid development were found to have a TSH receptor (TSHR) gene mutation. Together only 5% of thyroid dysgenesis can be explained today by genetic defects, suggesting epigenetic or other molecular causes, and only in 10% of patients a normally located thyroid gland is detected. In this smaller group of patients, genetic defects in candidate genes for thyroid hormone synthesis are frequently found. From the 1880s treatment in CH was started, first with thyroid extracts, later after installation of newborn screening programs for CH with LT4. In this chapter we will summarize the actual knowledge about the development of the thyroid gland in terms of their evolutionary origin as well in their ontogenetic maturation and to use this precognition as a basis for an understanding of the pathogenesis of congenital hypothyroidism with a specific emphasis on function and dysfunction of the TSHR.

Keywords

Thyroid development Thyroid evolution TSH receptor TSH receptor mutation Congenital hypothyroidism 

References

  1. 1.
    Fisher DA. Effectiveness of newborn screening programs for congenital hypothyroidism: prevalence of missed cases. Pediatr Clin N Am. 1987;34:881–90.CrossRefGoogle Scholar
  2. 2.
    Gruters A, L’allemand D, Beyer P, et al. Screening of newborn infants for hypothyroidism in Berlin (west) 1978–1982. Monatsschr Kinderheilkunde. 1983;131:100–5.Google Scholar
  3. 3.
    Klein AH, Meltzer S, Kenny FM. Improved prognosis in congenital hypothyroidism treated before age three months. J Pediatr. 1972;81:912–5.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Klein AH, Agustin AV, Foley TP Jr. Successful laboratory screening for congenital hypothyroidism. Lancet. 1974;2:77–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Albert BB, Heather N, Derraik JG, et al. Neurodevelopmental and body composition outcomes in children with congenital hypothyroidism treated with high-dose initial replacement and close monitoring. J Clin Endocrinol Metab. 2013;98:3663–70.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Fu C, Wang J, Luo S, et al. Next-generation sequencing analysis of TSHR in 384 Chinese subclinical congenital hypothyroidism (CH) and CH patients. Clin Chim Acta. 2016;462:127–32.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Abramowicz MJ, Duprez L, Parma J, et al. Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland. J Clin Invest. 1997;99:3018–24.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Biebermann H, Gruters A, Schoneberg T, et al. Congenital hypothyroidism caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1997;336:1390–1.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Sunthornthepvarakui T, Gottschalk ME, Hayashi Y, et al. Brief report: resistance to thyrotropin caused by mutations in the thyrotropin-receptor gene. N Engl J Med. 1995;332:155–60.CrossRefGoogle Scholar
  10. 10.
    Macchia PE, Lapi P, Krude H, et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet. 1998;19:83–6.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Clifton-Bligh RJ, Wentworth JM, Heinz P, et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet. 1998;19:399–401.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Devriendt K, Vanhole C, Matthijs G, et al. Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med. 1998;338:1317–8.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Krude H, Schutz B, Biebermann H, et al. Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest. 2002;109:475–80.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gruters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol. 2011;8:104–13.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Van Vliet G, Vassart G. Monozygotic twins are generally discordant for congenital hypothyroidism from thyroid dysgenesis. Horm Res. 2009;72:320.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kleinau G, Kalveram L, Kohrle J, et al. Minireview: insights into the structural and molecular consequences of the TSH-beta mutation C105Vfs114X. Mol Endocrinol. 2016;30:954–64.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Miyai K. Congenital thyrotropin deficiency—from discovery to molecular biology, postgenome and preventive medicine. Endocr J. 2007;54:191–203.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Biebermann H, Liesenkotter KP, Emeis M, et al. Severe congenital hypothyroidism due to a homozygous mutation of the betaTSH gene. Pediatr Res. 1999;46:170–3.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Leblanc C, Colin C, Cosse A, et al. Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie. 2006;88:1773–85.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Verhaeghe EF, Fraysse A, Guerquin-Kern JL, et al. Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation. J Biol Inorg Chem. 2008;13:257–69.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Miller AE, Heyland A. Endocrine interactions between plants and animals: implications of exogenous hormone sources for the evolution of hormone signaling. Gen Comp Endocrinol. 2010;166:455–61.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Krude H. Evolution, child development and the thyroid: a phylogenetic and ontogenetic introduction to normal thyroid function. Endocr Dev. 2014;26:1–16.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Freamat M, Sower SA. Integrative neuro-endocrine pathways in the control of reproduction in lamprey: a brief review. Front Endocrinol. 2013;4:151.CrossRefGoogle Scholar
  24. 24.
    Sower SA, Decatur WA, Hausken KN, et al. Emergence of an ancestral glycoprotein hormone in the pituitary of the sea lamprey, a basal vertebrate. Endocrinology. 2015;156:3026–37.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Denver RJ. Neuroendocrinology of amphibian metamorphosis. Curr Top Dev Biol. 2013;103:195–227.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Stein SA, Shanklin DR, Krulich L, et al. Evaluation and characterization of the hyt/hyt hypothyroid mouse. II. Abnormalities of TSH and the thyroid gland. Neuroendocrinology. 1989;49:509–19.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Antonica F, Kasprzyk DF, Opitz R, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491:66–71.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kurmann AA, Serra M, Hawkins F, et al. Regeneration of thyroid function by transplantation of differentiated pluripotent stem cells. Cell Stem Cell. 2015;17:527–42.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Trueba SS, Auge J, Mattei G, et al. PAX8, TITF1, and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis-associated malformations. J Clin Endocrinol Metab. 2005;90:455–62.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Szinnai G, Lacroix L, Carre A, et al. Sodium/iodide symporter (NIS) gene expression is the limiting step for the onset of thyroid function in the human fetus. J Clin Endocrinol Metab. 2007;92:70–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Thorpe-Beeston JG, Nicolaides KH, Mcgregor AM. Fetal thyroid function. Thyroid. 1992;2:207–17.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Ho SS, Metreweli C. Normal fetal thyroid volume. Ultrasound Obstet Gynecol. 1998;11:118–22.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Fisher DA. Physiological variations in thyroid hormones: physiological and pathophysiological considerations. Clin Chem. 1996;42:135–9.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Osler W. Transactions of the Congress of American Physicians and Surgeons. Fourth triennial session. Washington, DC. 1897;1:169–206.Google Scholar
  35. 35.
    Abramowicz MJ, Targovnik HM, Varela V, et al. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J Clin Invest. 1992;90:1200–4.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ieiri T, Cochaux P, Targovnik HM, et al. A 3′ splice site mutation in the thyroglobulin gene responsible for congenital goiter with hypothyroidism. J Clin Invest. 1991;88:1901–5.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Fujiwara H, Tatsumi K, Miki K, et al. Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat Genet. 1997;16:124–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Matsuda A, Kosugi S. A homozygous missense mutation of the sodium/iodide symporter gene causing iodide transport defect. J Clin Endocrinol Metab. 1997;82:3966–71.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Pohlenz J, Medeiros-Neto G, Gross JL, et al. Hypothyroidism in a Brazilian kindred due to iodide trapping defect caused by a homozygous mutation in the sodium/iodide symporter gene. Biochem Biophys Res Commun. 1997;240:488–91.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Everett LA, Glaser B, Beck JC, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet. 1997;17:411–22.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Moreno JC, Bikker H, Kempers MJ, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med. 2002;347:95–102.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Zamproni I, Grasberger H, Cortinovis F, et al. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab. 2008;93:605–10.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Moreno JC, Klootwijk W, Van Toor H, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358:1811–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Nicholas AK, Serra EG, Cangul H, et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab. 2016;101:4521–31.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Fan X, Fu C, Shen Y, et al. Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism. Clin Chim Acta. 2017;468:76–80.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Leger J, Olivieri A, Donaldson M, et al. European society for paediatric endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. J Clin Endocrinol Metab. 2014;99:363–84.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Castanet M, Polak M, Bonaiti-Pellie C, et al. Nineteen years of national screening for congenital hypothyroidism: familial cases with thyroid dysgenesis suggest the involvement of genetic factors. J Clin Endocrinol Metab. 2001;86:2009–14.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Deladoey J, Belanger N, Van Vliet G. Random variability in congenital hypothyroidism from thyroid dysgenesis over 16 years in Quebec. J Clin Endocrinol Metab. 2007;92:3158–61.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Perry R, Heinrichs C, Bourdoux P, et al. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J Clin Endocrinol Metab. 2002;87:4072–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Guazzi S, Price M, De Felice M, et al. Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J. 1990;9:3631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Thorwarth A, Schnittert-Hubener S, Schrumpf P, et al. Comprehensive genotyping and clinical characterisation reveal 27 novel NKX2-1 mutations and expand the phenotypic spectrum. J Med Genet. 2014;51:375–87.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mansouri A, Chowdhury K, Gruss P. Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet. 1998;19:87–90.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Al Taji E, Biebermann H, Limanova Z, et al. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. Eur J Endocrinol. 2007;156:521–9.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Montanelli L, Tonacchera M. Genetics and phenomics of hypothyroidism and thyroid dys- and agenesis due to PAX8 and TTF1 mutations. Mol Cell Endocrinol. 2010;322:64–71.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Meeus L, Gilbert B, Rydlewski C, et al. Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab. 2004;89:4285–91.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bamforth JS, Hughes IA, Lazarus JH, et al. Congenital hypothyroidism, spiky hair, and cleft palate. J Med Genet. 1989;26:49–51.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Zannini M, Avantaggiato V, Biffali E, et al. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 1997;16:3185–97.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    De Felice M, Ovitt C, Biffali E, et al. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet. 1998;19:395–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    De Felice M, Di Lauro R. Minireview: intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology. 2011;152:2948–56.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Opitz R, Maquet E, Zoenen M, et al. TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol. 2011;25:1579–99.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Biebermann H, Schoneberg T, Krude H, et al. Mutations of the human thyrotropin receptor gene causing thyroid hypoplasia and persistent congenital hypothyroidism. J Clin Endocrinol Metab. 1997;82:3471–80.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Gagne N, Parma J, Deal C, et al. Apparent congenital athyreosis contrasting with normal plasma thyroglobulin levels and associated with inactivating mutations in the thyrotropin receptor gene: are athyreosis and ectopic thyroid distinct entities? J Clin Endocrinol Metab. 1998;83:1771–5.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Kreuchwig A, Kleinau G, Krause G. Research resource: novel structural insights bridge gaps in glycoprotein hormone receptor analyses. Mol Endocrinol. 2013;27:1357–63.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Kreuchwig A, Kleinau G, Kreuchwig F, et al. Research resource: update and extension of a glycoprotein hormone receptors web application. Mol Endocrinol. 2011;25:707–12.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Calebiro D, Gelmini G, Cordella D, et al. Frequent TSH receptor genetic alterations with variable signaling impairment in a large series of children with nonautoimmune isolated hyperthyrotropinemia. J Clin Endocrinol Metab. 2012;97:E156–60.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Persani L, Calebiro D, Cordella D, et al. Genetics and phenomics of hypothyroidism due to TSH resistance. Mol Cell Endocrinol. 2010;322:72–82.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Calebiro D, De Filippis T, Lucchi S, et al. Intracellular entrapment of wild-type TSH receptor by oligomerization with mutants linked to dominant TSH resistance. Hum Mol Genet. 2005;14:2991–3002.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Enkhbayar P, Kamiya M, Osaki M, et al. Structural principles of leucine-rich repeat (LRR) proteins. Proteins. 2004;54:394–403.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sanders J, Chirgadze DY, Sanders P, et al. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid. 2007;17:395–410.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sanders P, Young S, Sanders J, et al. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol. 2011;46:81–99.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Kleinau G, Jaschke H, Neumann S, et al. Identification of a novel epitope in the thyroid-stimulating hormone receptor ectodomain acting as intramolecular signaling interface. J Biol Chem. 2004;279:51590–600.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Caltabiano G, Campillo M, De Leener A, et al. The specificity of binding of glycoprotein hormones to their receptors. Cell Mol Life Sci. 2008;65:2484–92.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kosugi S, Ban T, Akamizu T, et al. Site-directed mutagenesis of a portion of the extracellular domain of the rat thyrotropin receptor important in autoimmune thyroid disease and nonhomologous with gonadotropin receptors. Relationship of functional and immunogenic domains. J Biol Chem. 1991;266:19413–8.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Vassart G, Kleinau G. TSH receptor mutations and diseases. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, Koch C, Korbonits M, McLachlan R, New M, Purnell J, Rebar R, Singer F, Vinik A, editors. Endotext. South Dartmouth: MDText.com, Inc; 2000.Google Scholar
  75. 75.
    Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev. 2009;30:133–51.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Allgeier A, Offermanns S, Van Sande J, et al. The human thyrotropin receptor activates G-proteins Gs and Gq/11. J Biol Chem. 1994;269:13733–5.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Laugwitz KL, Allgeier A, Offermanns S, et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci U S A. 1996;93:116–20.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Van Sande J, Raspe E, Perret J, et al. Thyrotropin activates both the cyclic AMP and the PIP2 cascades in CHO cells expressing the human cDNA of TSH receptor. Mol Cell Endocrinol. 1990;74:R1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wiersinga WM. Graves’ orbitopathy: management of difficult cases. Ind J Endocrinol Meta. 2012;16:S150–2.Google Scholar
  80. 80.
    Buch TR, Biebermann H, Kalwa H, et al. G13-dependent activation of MAPK by thyrotropin. J Biol Chem. 2008;283:20330–41.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Krause K, Boisnard A, Ihling C, et al. Comparative proteomic analysis to dissect differences in signal transduction in activating TSH receptor mutations in the thyroid. Int J Biochem Cell Biol. 2012;44:290–301.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Latif R, Morshed SA, Zaidi M, et al. The thyroid-stimulating hormone receptor: impact of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on multimerization, cleavage, and signaling. Endocrinol Metab Clin N Am. 2009;38:319–41. viii.CrossRefGoogle Scholar
  83. 83.
    Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev. 1992;13:596–611.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Grasberger H, Van Sande J, Hag-Dahood Mahameed A, et al. A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis. J Clin Endocrinol Metab. 2007;92:2816–20.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kero J, Ahmed K, Wettschureck N, et al. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest. 2007;117:2399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Winkler F, Kleinau G, Tarnow P, et al. A new phenotype of nongoitrous and nonautoimmune hyperthyroidism caused by a heterozygous thyrotropin receptor mutation in transmembrane helix 6. J Clin Endocrinol Metab. 2010;95:3605–10.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kosugi S, Okajima F, Ban T, et al. Mutation of alanine 623 in the third cytoplasmic loop of the rat thyrotropin (TSH) receptor results in a loss in the phosphoinositide but not cAMP signal induced by TSH and receptor autoantibodies. J Biol Chem. 1992;267:24153–6.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Parma J, Duprez L, Van Sande J, et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature. 1993;365:649–51.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Claus M, Neumann S, Kleinau G, et al. Structural determinants for G-protein activation and specificity in the third intracellular loop of the thyroid-stimulating hormone receptor. J Mol Med. 2006;84:943–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Neumann S, Krause G, Claus M, et al. Structural determinants for g protein activation and selectivity in the second intracellular loop of the thyrotropin receptor. Endocrinology. 2005;146:477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kleinau G, Jaeschke H, Worth CL, et al. Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor. PLoS One. 2010;5:e9745.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Rasmussen SG, Devree BT, Zou Y, et al. Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–55.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Biebermann H, Winkler F, Handke D, et al. New pathogenic thyrotropin receptor mutations decipher differentiated activity switching at a conserved helix 6 motif of family a GPCR. J Clin Endocrinol Metab. 2012;97:E228–32.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kleinau G, Kreuchwig A, Worth CL, et al. An interactive web-tool for molecular analyses links naturally occurring mutation data with three-dimensional structures of the rhodopsin-like glycoprotein hormone receptors. Hum Mutat. 2010;31:E1519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Neumann S, Krause G, Chey S, et al. A free carboxylate oxygen in the side chain of position 674 in transmembrane domain 7 is necessary for TSH receptor activation. Mol Endocrinol. 2001;15:1294–305.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Urizar E, Claeysen S, Deupi X, et al. An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor. J Biol Chem. 2005;280:17135–41.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Kleinau G, Brehm M, Wiedemann U, et al. Implications for molecular mechanisms of glycoprotein hormone receptors using a new sequence-structure-function analysis resource. Mol Endocrinol. 2007;21:574–80.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Experimental Paediatric Endocrinology, Charite University-Medicine-BerlinBerlinGermany

Personalised recommendations