Advertisement

Imaging of Differentiated Thyroid Cancer with Iodine-124 and F-18-FDG

  • James NagarajahEmail author
  • Walter Jentzen
  • Vanessa Stebner
  • Ina Binse
  • Marcel Janssen
  • Ravinder K. Grewal
Chapter

Abstract

Positron emission tomography (PET) is an established imaging device in oncological clinical setting using several isotope-labeled compounds of which I-124 and F-18-labeled fluorodeoxyglucose (FDG) are the most relevant ones for imaging of patients with differentiated thyroid cancer (DTC). Whereas I-124 PET is applied to identify thyroid cancer cells expressing the sodium-iodine symporter (NIS) which is correlated to a well-differentiated phenotype, F-18-FDG PET reveals thyroid cancer cells with a higher level of dedifferentiated feature with a more aggressive phenotype. Besides imaging NIS, I-124 PET enables a dosimetry approach to calculate radiation doses delivered to target lesions. In this chapter, we discuss the role of these two imaging techniques in thyroid cancer patients.

Keywords

DTC I-124 PET/CT F-18 FDG PET/CT I-124 PET/MRI Dosimetry 

References

  1. 1.
    Jentzen W, Freudenberg LS, Bockisch A. Quantitative imaging of 124I with PET/CT in pretherapy lesion dosimetry effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging. 2011;55:21–43.PubMedGoogle Scholar
  2. 2.
    Jentzen W, Hoppenbrouwers J, van Leeuwen P, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55(11):1759–65.  https://doi.org/10.2967/jnumed.114.144089.CrossRefPubMedGoogle Scholar
  3. 3.
    Van Nostrand D, Moreau S, Bandaru VV, et al. 124I Positron emission tomography versus 131I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20(8):879–83.  https://doi.org/10.1089/thy.2009.0430.CrossRefPubMedGoogle Scholar
  4. 4.
    Furhang E, Larson SM, Buranapong P, Humm JL. Thyroid cancer dosimetry using clearance fitting. J Nucl Med. 1999;40:131–6.PubMedGoogle Scholar
  5. 5.
    Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49(6):1017–23.  https://doi.org/10.2967/jnumed.107.047159.CrossRefPubMedGoogle Scholar
  6. 6.
    Freudenberg L, Jentzen W, Görges R, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46(4):121–8.  https://doi.org/10.1160/nukmed-0076.CrossRefPubMedGoogle Scholar
  7. 7.
    Pettinato C, Spezi E, Nanni C, et al. Pretherapeutic dosimetry in patients affected by metastatic thyroid cancer using 124I PET/CT sequential scans for 131I treatment planning. Clin Nucl Med. 2014;39(8):e367–74.  https://doi.org/10.1097/RLU.0000000000000490.CrossRefPubMedGoogle Scholar
  8. 8.
    Khorjekar GR, Van Nostrand D, Garcia C, et al. Do negative 124I pretherapy positron emission tomography scans in patients with elevated serum thyroglobulin levels predict negative 131I posttherapy scans? Thyroid. 2014;24(9):1394–9.  https://doi.org/10.1089/thy.2013.0713.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ruhlmann M, Jentzen W, Ruhlmann V, et al. High level of agreement between pretherapeutic 124I PET and intratherapeutic 131I images in detecting iodine-positive thyroid cancer metastases. J Nucl Med. 2016.  https://doi.org/10.2967/jnumed.115.169649.CrossRefGoogle Scholar
  10. 10.
    Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.  https://doi.org/10.1056/NEJMoa1209288.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chakravarty D, Santos E, Ryder M, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11.  https://doi.org/10.1172/JCI46382DS1.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nagarajah J, Jentzen W, Hartung V, et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38(10):1862–8.  https://doi.org/10.1007/s00259-011-1866-1.CrossRefPubMedGoogle Scholar
  13. 13.
    Feine U, Lietzenmayer R, Hanke J-P, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine- 18-FDG and iodine- 13 1-iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468–72.PubMedGoogle Scholar
  14. 14.
    Hong CM, Ahn BC, Jeong SY, Lee SW, Lee J. Distant metastatic lesions in patients with differentiated thyroid carcinoma. Nuklearmedizin. 2013;52(4):121–9.  https://doi.org/10.3413/Nukmed-0541-12-11.CrossRefPubMedGoogle Scholar
  15. 15.
    Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[ 18F]Fluoro-2-deoxy- d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.  https://doi.org/10.1210/jc.2005-1534.CrossRefPubMedGoogle Scholar
  16. 16.
    Rivera M, Ghossein RA, Schöder H, Gomez D, Larson SM, Tuttle RM. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113(1):48–56.  https://doi.org/10.1002/cncr.23515.CrossRefPubMedGoogle Scholar
  17. 17.
    Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu S-Y. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med. 2012;37(2):121–7.  https://doi.org/10.1097/RLU.0b013e3182393599.CrossRefPubMedGoogle Scholar
  18. 18.
    Xing M. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309(14):1493.  https://doi.org/10.1001/jama.2013.3190.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nagarajah J, Ho AL, Tuttle RM, Weber WA, Grewal RK. Correlation of BRAFV600E mutation and glucose metabolism in thyroid cancer patients: an 18F-FDG PET study. J Nucl Med. 2015;56(5):662–7.  https://doi.org/10.2967/jnumed.114.150607.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rosenbaum-Krumme SJ, Görges R, Bockisch A, Binse I. 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging. 2012;39(9):1373–80.  https://doi.org/10.1007/s00259-012-2065-4.CrossRefPubMedGoogle Scholar
  21. 21.
    Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F]Fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85(3):1–7.Google Scholar
  22. 22.
    Helal OB, Merlet P, Toubert M-E, et al. Clinical impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy. J Nucl Med. 2001;42:1464–9.PubMedGoogle Scholar
  23. 23.
    Schlüter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med. 2001;42:71–6.PubMedGoogle Scholar
  24. 24.
    Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr Relat Cancer. 2007;14(4):957–77.  https://doi.org/10.1677/ERC-07-0085.CrossRefPubMedGoogle Scholar
  25. 25.
    Ma C, Xie J, Lou Y, Gao Y, Zuo S, Wang X. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol. 2010;163(2):177–83.  https://doi.org/10.1530/EJE-10-0256.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • James Nagarajah
    • 1
    • 2
    Email author
  • Walter Jentzen
    • 2
  • Vanessa Stebner
    • 2
  • Ina Binse
    • 2
  • Marcel Janssen
    • 1
  • Ravinder K. Grewal
    • 3
  1. 1.Department of Radiology and Nuclear MedicineRadboudumcNijmegenThe Netherlands
  2. 2.Klinik für NuklearmedizinUniversitätsklinikum Essen, Universität Duisburg-EssenEssenGermany
  3. 3.Molecular Imaging and Therapy ServiceMemorial Sloan Kettering Cancer Center, Weill Cornell Medical CollegeNew YorkUSA

Personalised recommendations