Advertisement

Interpretations of Presburger Arithmetic in Itself

  • Alexander Zapryagaev
  • Fedor Pakhomov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10703)

Abstract

Presburger arithmetic \(\mathop {\mathbf {PrA}}\nolimits \) is the true theory of natural numbers with addition. We study interpretations of \(\mathop {\mathbf {PrA}}\nolimits \) in itself. We prove that all one-dimensional self-interpretations are definably isomorphic to the identity self-interpretation. In order to prove the results we show that all linear orders that are interpretable in \((\mathbb {N},+)\) are scattered orders with the finite Hausdorff rank and that the ranks are bounded in terms of the dimension of the respective interpretations. From our result about self-interpretations of \(\mathop {\mathbf {PrA}}\nolimits \) it follows that \(\mathop {\mathbf {PrA}}\nolimits \) isn’t one-dimensionally interpretable in any of its finite subtheories. We note that the latter was conjectured by A. Visser.

Keywords

Presburger Arithmetic Interpretations Scattered linear orders 

Notes

Acknowledgments

The authors wish to thank Lev Beklemishev for suggesting to study Visser’s conjecture, number of discussions of the subject, and his useful comments on the paper.

References

  1. 1.
    Apelt, H.: Axiomatische Untersuchungen über einige mit der Presburgerschen Arithmetik verwandte Systeme. MLQ Math. Log. Q. 12(1), 131–168 (1966)Google Scholar
  2. 2.
    Barrington, D., Immerman, N., Straubing, H.: On uniformity within NC1. J. Comput. System Sci. 41(3), 274–306 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blakley, G.R.: Combinatorial remarks on partitions of a multipartite number. Duke Math. J. 31(2), 335–340 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ginsburg, S., Spanier, E.: Semigroups, Presburger formulas, and languages. Pacific J. Math. 16(2), 285–296 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmatic. Springer, New York (1993)CrossRefzbMATHGoogle Scholar
  6. 6.
    Fueter, R., Pólya, G.: Rationale Abzhlung der Gitterpunkte, Vierteljschr. Naturforsch. Ges. Zrich 58, 280–386 (1923)Google Scholar
  7. 7.
    Hausdorff, F.: Grundzüge einer Theorie der geordneten Mengen. Math. Ann. 65(4), 435–505 (1908)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hodges, W.: Model Theory, vol. 42. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  9. 9.
    Ito, R.: Every semilinear set is a finite union of disjoint linear sets. J. Comput. Syst. Sci. 3(2), 221–231 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Khoussainov, B., Rubin, S., Stephan, F.: Automatic linear orders and trees. ACM Trans. Comput. Log. 6(4), 675–700 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nathanson, M.B.: Cantor polynomials and the Fueter-Pólya theorem. Am. Math. Monthly 123(10), 1001–1012 (2016)CrossRefGoogle Scholar
  12. 12.
    Tarski, A., Mostowski, A., Robinson, R.M.: Undecidable Theories. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1953)zbMATHGoogle Scholar
  13. 13.
    Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du I congrès de Mathématiciens des Pays Slaves 92101 (1929). English translation in [16]Google Scholar
  14. 14.
    Rosenstein, J.: Linear Orderings, vol. 98. Academic Press, New York (1982)zbMATHGoogle Scholar
  15. 15.
    Schweikardt, N.: Arithmetic, first-order logic, and counting quantifiers. ACM Trans. Comput. Log. 6(3), 634–671 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stansifer, R.: Presburger’s Article on Integer Arithmetic: Remarks and Translation (Technical report). Cornell University (1984)Google Scholar
  17. 17.
    Sturmfels, B.: On vector partition functions. J. Combin. Theory Ser. A 72(2), 302–309 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Visser, A.: An overview of interpretability logic. In: Kracht, M., de Rijke, M., Wansing, H., Zakharyaschev, M. (eds.) Advances in Modal Logic. CSLI Lecture Notes, vol. 87, pp. 307–359 (1998)Google Scholar
  19. 19.
    Zoethout, J.: Interpretations in Presburger Arithmetic. BS thesis. Utrecht University (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Steklov Mathematical InstituteRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations