# Wireless Evacuation on m Rays with k Searchers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10641)

## Abstract

We study the online problem of evacuating k robots on m concurrent rays to a single unknown exit. All k robots start on the same point $$s$$, not necessarily on the junction $$j$$ of the m rays, move at unit speed, and can communicate wirelessly. The goal is to minimize the competitive ratio, i.e., the ratio between the time it takes to evacuate all robots to the exit and the time it would take if the location of the exit was known in advance, on a worst-case instance.

When $$k=m$$, we show that a simple waiting strategy yields a competitive ratio of 4 and present a lower bound of $$2+\sqrt{7/3} \approx 3.52753$$ for all $$k=m\ge 3$$. For $$k=3$$ robots on $$m=3$$ rays, we give a class of parametrized algorithms with a nearly matching competitive ratio of $$2+\sqrt{3} \approx 3.73205$$. We also present an algorithm for $$1<k<m$$, achieving a competitive ratio of $$1 + 2 \cdot \frac{m - 1}{k} \cdot \left( 1 + \frac{k}{m - 1} \right) ^{1 + \frac{m-1}{k}}$$, obtained by parameter optimization on a geometric search strategy. Interestingly, the robots can be initially oblivious to the value of $$m > 2$$.

Lastly, by using a simple but fundamental argument, we show that for $$k<m$$ robots, no algorithm can reach a competitive ratio better than $$3+2\left\lfloor (m-1)/k \right\rfloor$$, for every km with $$k<m$$.

## Notes

### Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. Klaus-Tycho Foerster is supported by the Danish VILLUM FONDEN project ReNet.

## References

1. 1.
Angelopoulos, S.: Deterministic searching on the line. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 531–533. Springer, New York (2016).
2. 2.
Angelopoulos, S., Arsénio, D., Dürr, C., López-Ortiz, A.: Multi-processor search and scheduling problems with setup cost. Theory Comput. Syst. 60, 1–34 (2016)
3. 3.
Angelopoulos, S., López-Ortiz, A., Panagiotou, K.: Multi-target ray searching problems. Theor. Comput. Sci. 540, 2–12 (2014)
4. 4.
Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)
5. 5.
Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5, 143–154 (1995)
6. 6.
Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)
7. 7.
Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. Math. 8(4), 419–429 (1970)
8. 8.
Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)
9. 9.
Bose, P., De Carufel, J.-L.: A general framework for searching on a line. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 143–153. Springer, Cham (2016).
10. 10.
Bose, P., De Carufel, J.-L., Durocher, S.: Searching on a line: a complete characterization of the optimal solution. Theoret. Comput. Sci. 569, 24–42 (2015)
11. 11.
Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017).
12. 12.
Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). Google Scholar
13. 13.
Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: Proceedings of 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 28:1–28:8. ACM (2016)Google Scholar
14. 14.
Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). Google Scholar
15. 15.
Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015).
16. 16.
Czyzowicz, J., Godon, M., Kranakis, E., Godon, M., Krizanc, D., Rytter, W., Wlodarczyk, M.: Evacuation from a disc in the presence of a faulty robot. In: Proceedings of SIROCCO (2017)Google Scholar
17. 17.
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Giakkoupis, G. (ed.) Proceedings of 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414. ACM (2016)Google Scholar
18. 18.
Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015).
19. 19.
Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2–3), 342–355 (2006)
20. 20.
Foerster, K.-T., Wattenhofer, R.: Lower and upper competitive bounds for online directed graph exploration. Theor. Comput. Sci. 655, 15–29 (2016)
21. 21.
Gal, S.: Minimax solutions for linear search problems. SIAM J. Appl. Math. 27(1), 17–30 (1974)
22. 22.
Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 132–142. Springer, Heidelberg (1999). Google Scholar
23. 23.
Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. Comput. Geom. 18(3), 125–139 (2001)
24. 24.
Jaillet, P., Stafford, M.: Online searching. Oper. Res. 49(4), 501–515 (2001)
25. 25.
Kamphans, T., Langetepe, E.: Optimal competitive online ray search with an error-prone robot. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 593–596. Springer, Heidelberg (2005).
26. 26.
Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.L.: Optimal constructions of hybrid algorithms. J. Algorithms 29(1), 142–164 (1998)
27. 27.
Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)
28. 28.
Komm, D., Královič, R., Královič, R., Smula, J.: Treasure hunt with advice. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 328–341. Springer, Cham (2015).
29. 29.
López-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays? Theoret. Comput. Sci. 261(2), 267–295 (2001)
30. 30.
López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and robot searching under the competitive framework. Theoret. Comput. Sci. 310(1–3), 527–537 (2004)
31. 31.
Schuierer, S.: A lower bound for randomized searching on m rays. In: Klein, R., Six, H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 264–277. Springer, Heidelberg (2003).
32. 32.
Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)
33. 33.
Tate, S.R.: Randomized searching on rays or the line. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 1757–1759. Springer, New York (2016).