Advertisement

Wireless Evacuation on m Rays with k Searchers

  • Sebastian Brandt
  • Klaus-Tycho Foerster
  • Benjamin Richner
  • Roger Wattenhofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10641)

Abstract

We study the online problem of evacuating k robots on m concurrent rays to a single unknown exit. All k robots start on the same point \(s\), not necessarily on the junction \(j\) of the m rays, move at unit speed, and can communicate wirelessly. The goal is to minimize the competitive ratio, i.e., the ratio between the time it takes to evacuate all robots to the exit and the time it would take if the location of the exit was known in advance, on a worst-case instance.

When \(k=m\), we show that a simple waiting strategy yields a competitive ratio of 4 and present a lower bound of \(2+\sqrt{7/3} \approx 3.52753\) for all \(k=m\ge 3\). For \(k=3\) robots on \(m=3\) rays, we give a class of parametrized algorithms with a nearly matching competitive ratio of \(2+\sqrt{3} \approx 3.73205\). We also present an algorithm for \(1<k<m\), achieving a competitive ratio of \(1 + 2 \cdot \frac{m - 1}{k} \cdot \left( 1 + \frac{k}{m - 1} \right) ^{1 + \frac{m-1}{k}}\), obtained by parameter optimization on a geometric search strategy. Interestingly, the robots can be initially oblivious to the value of \(m > 2\).

Lastly, by using a simple but fundamental argument, we show that for \(k<m\) robots, no algorithm can reach a competitive ratio better than \(3+2\left\lfloor (m-1)/k \right\rfloor \), for every km with \(k<m\).

Notes

Acknowledgments

We would like to thank the anonymous reviewers for their helpful comments. Klaus-Tycho Foerster is supported by the Danish VILLUM FONDEN project ReNet.

References

  1. 1.
    Angelopoulos, S.: Deterministic searching on the line. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 531–533. Springer, New York (2016).  https://doi.org/10.1007/978-3-642-27848-8_106-2 CrossRefGoogle Scholar
  2. 2.
    Angelopoulos, S., Arsénio, D., Dürr, C., López-Ortiz, A.: Multi-processor search and scheduling problems with setup cost. Theory Comput. Syst. 60, 1–34 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Angelopoulos, S., López-Ortiz, A., Panagiotou, K.: Multi-target ray searching problems. Theor. Comput. Sci. 540, 2–12 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baeza-Yates, R.A., Schott, R.: Parallel searching in the plane. Comput. Geom. 5, 143–154 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. Math. 8(4), 419–429 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)CrossRefGoogle Scholar
  9. 9.
    Bose, P., De Carufel, J.-L.: A general framework for searching on a line. In: Kaykobad, M., Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 143–153. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30139-6_12 CrossRefGoogle Scholar
  10. 10.
    Bose, P., De Carufel, J.-L., Durocher, S.: Searching on a line: a complete characterization of the optimal solution. Theoret. Comput. Sci. 569, 24–42 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brandt, S., Laufenberg, F., Lv, Y., Stolz, D., Wattenhofer, R.: Collaboration without communication: evacuating two robots from a disk. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 104–115. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57586-5_10 CrossRefGoogle Scholar
  12. 12.
    Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46078-8_14 Google Scholar
  13. 13.
    Czyzowicz, J., Dobrev, S., Georgiou, K., Kranakis, E., MacQuarrie, F.: Evacuating two robots from multiple unknown exits in a circle. In: Proceedings of 17th International Conference on Distributed Computing and Networking, Singapore, 4–7 January 2016, pp. 28:1–28:8. ACM (2016)Google Scholar
  14. 14.
    Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45174-8_9 Google Scholar
  15. 15.
    Czyzowicz, J., Georgiou, K., Kranakis, E., Narayanan, L., Opatrny, J., Vogtenhuber, B.: Evacuating robots from a disk using face-to-face communication (extended abstract). In: Paschos, V.T., Widmayer, P. (eds.) CIAC 2015. LNCS, vol. 9079, pp. 140–152. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-18173-8_10 CrossRefGoogle Scholar
  16. 16.
    Czyzowicz, J., Godon, M., Kranakis, E., Godon, M., Krizanc, D., Rytter, W., Wlodarczyk, M.: Evacuation from a disc in the presence of a faulty robot. In: Proceedings of SIROCCO (2017)Google Scholar
  17. 17.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: Giakkoupis, G. (ed.) Proceedings of 2016 ACM Symposium on Principles of Distributed Computing, PODC 2016, Chicago, IL, USA, 25–28 July 2016, pp. 405–414. ACM (2016)Google Scholar
  18. 18.
    Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Wireless autonomous robot evacuation from equilateral triangles and squares. In: Papavassiliou, S., Ruehrup, S. (eds.) ADHOC-NOW 2015. LNCS, vol. 9143, pp. 181–194. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19662-6_13 CrossRefGoogle Scholar
  19. 19.
    Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theor. Comput. Sci. 361(2–3), 342–355 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Foerster, K.-T., Wattenhofer, R.: Lower and upper competitive bounds for online directed graph exploration. Theor. Comput. Sci. 655, 15–29 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gal, S.: Minimax solutions for linear search problems. SIAM J. Appl. Math. 27(1), 17–30 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 132–142. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49116-3_12 Google Scholar
  23. 23.
    Hammar, M., Nilsson, B.J., Schuierer, S.: Parallel searching on m rays. Comput. Geom. 18(3), 125–139 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Jaillet, P., Stafford, M.: Online searching. Oper. Res. 49(4), 501–515 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kamphans, T., Langetepe, E.: Optimal competitive online ray search with an error-prone robot. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503, pp. 593–596. Springer, Heidelberg (2005).  https://doi.org/10.1007/11427186_51 CrossRefGoogle Scholar
  26. 26.
    Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.L.: Optimal constructions of hybrid algorithms. J. Algorithms 29(1), 142–164 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Komm, D., Královič, R., Královič, R., Smula, J.: Treasure hunt with advice. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 328–341. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25258-2_23 CrossRefGoogle Scholar
  29. 29.
    López-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays? Theoret. Comput. Sci. 261(2), 267–295 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling and robot searching under the competitive framework. Theoret. Comput. Sci. 310(1–3), 527–537 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schuierer, S.: A lower bound for randomized searching on m rays. In: Klein, R., Six, H.-W., Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 264–277. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36477-3_20 CrossRefGoogle Scholar
  32. 32.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tate, S.R.: Randomized searching on rays or the line. In: Kao, M.-Y. (ed.) Encyclopedia of Algorithms, pp. 1757–1759. Springer, New York (2016).  https://doi.org/10.1007/978-0-387-30162-4_328 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sebastian Brandt
    • 1
  • Klaus-Tycho Foerster
    • 2
  • Benjamin Richner
    • 1
  • Roger Wattenhofer
    • 1
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.Aalborg UniversityAalborgDenmark

Personalised recommendations