Advertisement

Killing Nodes as a Countermeasure to Virus Expansion

  • François Bonnet
  • Quentin Bramas
  • Xavier Défago
  • Thanh Dang Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10641)

Abstract

The spread of a virus and the containment of such spread have been widely studied in the literature. These two problems can be abstracted as a two-players stochastic game in which one side tries to spread the infection to the entire system, while the other side aims to contain the infection to a finite area. Three parameters play a particularly important role: (1) the probability p of successful infection, (2) the topology of the network, and (3) the probability \(\alpha \) that a strategy message has priority over the infection.

This paper studies the effect of killing strategies, where a node sacrifices itself and possibly some of its neighbors, to contain the spread of a virus in an infinite grid. Our contribution is threefold: (1) We prove that the simplest killing strategy is equivalent to the problem of site percolation; (2) when killing messages have priority, we prove that there always exists a killing strategy that contains a virus, for any probability \(0\le p<1\); in contrast, (3) when killing message do not have priority, there is not always a successful killing strategy, and we study the virus propagation for various \({0\le \alpha <1}\).

Notes

Acknowledgments

This work is partially supported by JSPS KAKENHI Grant (C)(JP15K00183) and (JP15K00189) and Japan Science and Technology Agency, CREST (JPMJCR1404) and Infrastructure Development for Promoting International S&T Cooperation and Project for Establishing a Nationwide Practical Education Network for IT Human Resources Development, Education Network for Practical Information Technologies.

References

  1. 1.
    Anderson, R.M., May, R.M.: Population biology of infectious diseases: part I. Nature 280(5721), 361–367 (1979)CrossRefGoogle Scholar
  2. 2.
    Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Brumley, D., Newsome, J., Song, D., Wang, H., Jha, S.: Towards automatic generation of vulnerability-based signatures. In: Proceedings of the 27th IEEE Symposium on Security and Privacy, S&P 2006, pp. 2–16, May 2006Google Scholar
  4. 4.
    Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., Faloutsos, C.: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4), 1 (2008)CrossRefGoogle Scholar
  5. 5.
    Falliere, N.: Sality: story of a peer-to-peer viral network, July 2011. http://www.symantec.com/connect/sites/default/files/sality_peer_to_peer_viral_network.pdf
  6. 6.
    Grassberger, P.: On the critical behavior of the general epidemic process and dynamical percolation. Math. Biosci. 63(2), 157–172 (1983)CrossRefzbMATHGoogle Scholar
  7. 7.
    Hu, R., Sopena, J., Arantes, L., Sens, P., Demeure, I.: Fair comparison of gossip algorithms over large-scale random topologies. In: Proceedings of the 31st IEEE International Symposium on Reliable Distributed Systems (SRDS 2012), pp. 331–340, October 2012Google Scholar
  8. 8.
    Jensen, I.: Low-density series expansions for directed percolation: II. The square lattice with a wall. J. Phy. A: Math. Gen. 32(33), 6055 (1999). https://stacks.iop.org/0305-4470/32/i=33/a=304 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Jensen, I.: Low-density series expansions for directed percolation: III. Some two-dimensional lattices. J. Phy. A: Math. Gen. 37(27), 6899 (2004). http://stacks.iop.org/0305-4470/37/i=27/a=003 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kephart, J.O., White, S.R.: Directed-graph epidemiological models of computer viruses. In: Proceedings of the 12th IEEE Symposium on Security and Privacy, S&P 1991, pp. 343–361 (1991)Google Scholar
  11. 11.
    Kephart, J.O., White, S.R.: Measuring and modeling computer virus prevalence. In: Proceedings of the 14th IEEE Symposium on Security and Privacy, S&P 1993, pp. 2–15 (1993)Google Scholar
  12. 12.
    Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 115, no. 772, pp. 700–721 (1927)Google Scholar
  13. 13.
    Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Polymorphic worm detection using structural information of executables. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 207–226. Springer, Heidelberg (2006).  https://doi.org/10.1007/11663812_11 CrossRefGoogle Scholar
  14. 14.
    Lee, M.J.: Pseudo-random-number generators and the square site percolation threshold. Phy. Rev. E 78(3), 031131 (2008)CrossRefGoogle Scholar
  15. 15.
    Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: fast signature generation for zero-day polymorphic worms with provable attack resilience. In: Proceedings of the 27th IEEE Symposium on Security and Privacy, S&P 2006, pp. 32–47, May 2006Google Scholar
  16. 16.
    Malarz, K., Galam, S.: Square-lattice site percolation at increasing ranges of neighbor bonds. Phys. Rev. E 71, 016125 (2005).  https://doi.org/10.1103/PhysRevE.71.016125 CrossRefGoogle Scholar
  17. 17.
    May, R.M., Anderson, R.M.: Population biology of infectious diseases: part II. Nature 280(5722), 455–461 (1979)CrossRefGoogle Scholar
  18. 18.
    Moore, D., Shannon, C., Voelker, G., Savage, S.: Internet quarantine: requirements for containing self-propagating code. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2003, vol. 3, pp. 1901–1910, Mar 2003Google Scholar
  19. 19.
    Nguyen, T.D., Bonnet, F., Défago, X.: Analyzing the impact of mitigation strategies on the spread of a virus. Research Report IS-RR-2014-002, Japan Advanced Institute of Science and Technology (JAIST), May 2014Google Scholar
  20. 20.
    Pastor-Satorras, R., Vespignani, A.: Epidemic dynamics and endemic states in complex networks. Phys. Rev. E 63(6), 066117 (2001)CrossRefGoogle Scholar
  21. 21.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)CrossRefGoogle Scholar
  22. 22.
    Sasson, Y., Cavin, D., Schiper, A.: Probabilistic broadcast for flooding in wireless mobile ad hoc networks. In: Proceedings of the IEEE Wireless Communications and Networking, WCNC 2003, pp. 1124–1130 (2003)Google Scholar
  23. 23.
    Staniford, S., Paxson, V., Weaver, N.: How to own the internet in your spare time. In: Proceedings of the 11th USENIX Security Symposium, USENIX-Security 2002, pp. 149–167. USENIX Association, Berkeley, CA, USA (Aug 2002)Google Scholar
  24. 24.
    Van Mieghem, P.: The \(N\)-intertwined SIS epidemic network model. Computing 93(2–4), 147–169 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Van Mieghem, P., Omic, J., Kooij, R.E.: Virus spread in networks. IEEE/ACM Trans. Networking 17(1), 1–14 (2009)CrossRefGoogle Scholar
  26. 26.
    Wang, J., Zhou, Z., Liu, Q., Garoni, T.M., Deng, Y.: High-precision Monte Carlo study of directed percolation in (\(d+1\)) dimensions. Phys. Rev. E 88, 042102 (2013).  https://doi.org/10.1103/PhysRevE.88.042102 CrossRefGoogle Scholar
  27. 27.
    Xia, J., Vangala, S., Wu, J., Gao, L., Kwiat, K.: Effective worm detection for various scan techniques. J. Comput. Secur. 14(4), 359–387 (2006)CrossRefGoogle Scholar
  28. 28.
    Xu, W., Zhang, F., Zhu, S.: Toward worm detection in online social networks. In: Proceedings of the 26th Annual Computer Security Applications Conference, ACSAC 2010, pp. 11–20. ACM, New York, December 2010Google Scholar
  29. 29.
    Zhou, L., Zhang, L., McSherry, F., Immorlica, N., Costa, M., Chien, S.: A first look at peer-to-peer worms: threats and defenses. In: Castro, M., van Renesse, R. (eds.) IPTPS 2005. LNCS, vol. 3640, pp. 24–35. Springer, Heidelberg (2005).  https://doi.org/10.1007/11558989_3 CrossRefGoogle Scholar
  30. 30.
    Zou, C.C., Gong, W., Towsley, D.: Code red worm propagation modeling and analysis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security, CCS 2002, pp. 138–147. ACM, New York (2002)Google Scholar
  31. 31.
    Zou, C.C., Towsley, D., Gong, W.: Modeling and simulation study of the propagation and defense of internet e-mail worms. IEEE Trans. Dependable Secure Comput. 4(2), 105–118 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • François Bonnet
    • 1
  • Quentin Bramas
    • 2
  • Xavier Défago
    • 3
  • Thanh Dang Nguyen
    • 4
  1. 1.Graduate School of EngineeringOsaka UniversitySuitaJapan
  2. 2.Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606ParisFrance
  3. 3.School of ComputingTokyo Institute of TechnologyTokyoJapan
  4. 4.University of ChicagoChicagoUSA

Personalised recommendations